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Secret Sharing

A dealer shares a secret with several players in such a way that 
authorized subsets of players have to collaborate to retrieve it

a

c

sb

● Access parties: Authorized subsets of players
● Adversary structure: Groups that should not get information
● Threshold schemes: any k or more players are authorized

s
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Several configurations

CC: Classical information shared using classical resources

CQ: Classical information shared using quantum resources
→ Improved security ~ multipartite QKD

QQ: The secret is a quantum state
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Some previous work

● First classical protocol

● First proposal in DV (qubits)

● Cluster-state based protocols in DV

● Several proposals in CV...

● ...and experiments

● CV cluster state - based protocols

A. Shamir,  Comms of the ACM 22 (11)  (1979)

R. Cleve, D. Gottesman & H.-K. Lo,  PRL 83  (1999)

T. Tyc & B.C. Sanders, PRA 65  (2002)

D. Markham & B.C. Sanders, PRA 78  (2008)

T. Tyc & B.C. Sanders, JoP A 36   (2003)

A.M. Lance et al, PRL 92   (2004)

H.-K. Lo & C. Weedbrook, PRA 88   (2013)

P. Van Loock & D. Markham, AIP Conf. Proc. 1363, 256,  (2011)

M. Hillery, V. Bužek & A. Berthiaume,  PRA 59  (1999)
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So what’s new?

Why would I care?

● Useful to design experiments
● Potentially applicable to share interesting/useful states
● Connections with black holes physics

● random encoding! (...almost any passive interferometer)

● Multi-mode secrets
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So what’s new?

Why would I care?

● Useful to design experiments
● Potentially applicable to share interesting/useful states
● Connections with relativity & black holes (via error correction)

● random encoding! (...almost any passive interferometer)

● Multi-mode secrets

Hayden & May arXiv:1806.04154  (2018)

Wu, Khalid & Sanders NJP 20  (2018)

Hayden & Preskill JHEP (2007)
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Outline

● Continuous-variable systems

● (Prologue & ) Main result

● Sketch of the proof 

● Quality of the scheme(s)

● Conclusions



Continuous variables
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DV and CV, Gaussian states

DV : information encoded in qu-bits CV : information encoded in observables with  
continuous spectrum, e.g. :    ,    

Optical ex:
 

Polarization of 
single photon

Optical ex:
 

Field quadratures
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Vacuum → symmetric Squeezing

Gaussian states:
May be negative!

Wigner function ~ quantum optical phase space

DV : information encoded in qu-bits CV : information encoded in observables with  
continuous spectrum, e.g. :    ,    
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Gaussian states:
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Wigner function ~ quantum optical phase space

DV : information encoded in qu-bits CV : information encoded in observables with  
continuous spectrum, e.g. :    ,    

Optical ex:
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Squeezed states

Squeezing

Reduced fluctuations in q or p

In the limit, eigen-states of q or p
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Squeezed states

Squeezing

Workhorse of CV Quantum information:

● Easy to produce in the lab (non-linear optical media)
● Deterministic entanglement with passive linear optics
● Used for quantum teleportation
● Experimental production of CV graph states

Reduced fluctuations in q or p

In the limit, eigen-states of q or p



Main result

FA,  G. Ferrini, F. Grosshans, D. Markham, PRA 100, 022303 (2019)

(arxiv)
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A quantum (3,5) scheme with graph states

(CV) Bell Measurement

P. Van Loock & D. Markham, AIP Conf. Proc. 1363, 256,  (2011)

Start Teleportation Secret is encoded

^

^
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P. Van Loock & D. Markham, AIP Conf. Proc. 1363, 256,  (2011)

Start Teleportation Secret is encoded
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Ideal cluster states : momentum eigenstates + CZs (entangling gates)
Realistic cluster states : squeezed states + CZs (entangling gates)
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A quantum (3,5) scheme with graph states

(CV) Bell Measurement

P. Van Loock & D. Markham, AIP Conf. Proc. 1363, 256,  (2011)

Start Teleportation Secret is encoded

^

^

Ideal cluster states : momentum eigenstates + CZs (entangling gates)
Realistic cluster states : squeezed states + CZs (entangling gates)

Experiments : squeezed states + linear optics

What’s the most general interferometer that does the trick ?

Motivated by actual experimental setup : Y. Cai, et al, Nat. Comm. 8, 15645  (2017)
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A general scheme
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Derive conditions on the interferometer  such 
that each access party can either: 

A general scheme

● Measure secret quadratures

● Physically reconstruct the secret
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Derive conditions on the interferometer  such 
that each access party can either: 

A general scheme

● Measure secret quadratures

● Physically reconstruct the secret

Almost any passive interferometer can do

(In the sense of Haar measure)
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Sketch of the proof



32

Gaussian transformations and Symplectic matrices

Standard symplectic form
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Gaussian transformations and Symplectic matrices

Standard symplectic form

Unitary Gaussian transformations Symplectic Group

Symplectic Phase-space 
translation
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Gaussian transformations and Symplectic matrices

Standard symplectic form

Unitary Gaussian transformations Symplectic Group

Squeezing:

Linear optics (passive interferometers):

Phase-space 
translation

Any S 
composing:

Symplectic
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Decoding conditions
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Decoding conditions

→«bad» matrices = lower dimensional set of  U(n)
→ Zero Haar (constant) measure

«bad» matrices 

Goal: 1) Get rid of these
 

2) solve for these

For each A, find R s.t 
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Decoding conditions

→«bad» matrices = lower dimensional set of  U(n)
→ Zero Haar (constant) measure

If : A can sample 

Or construct a unitary Gaussian decoding
«bad» matrices 

Goal: 1) Get rid of these
 

2) solve for these

For each A, find R s.t 
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Reconstruction by authorized sets

Depend on SL

Coherent state secret:
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Reconstruction by authorized sets
R

an
do

m
B

es
t o

f 1
k

2 out of 3 players try to reconstruct 1 secret mode

Depend on SL

Coherent state secret:



43

Reconstruction by authorized sets
Any state:
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2 out of 3 players try to reconstruct 1 secret mode

→ eigenvalues of
Depend on SL

Coherent state secret:
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Depend on SL

Reconstruction by authorized sets
Coherent state secret: Any state:

→ eigenvalues of

R
an

do
m

B
es

t o
f 1

k

2 out of 3 players try to reconstruct 1 secret mode

A)Entanglement 
breaking

B)Best copy

A

A

B

B
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Unauthorized subsets

● Finite squeezing:
some information always leaked to adversaries
 

● Mutual information can be computed from (TODO)
● High enough squeezing: 

bound information leak (optimal cloning)

● For infinite squeezing: ramp scheme:

 → reconstruct

→ no information

→ some secret quadratures w/o anti-sqz
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Unauthorized subsets

● Finite squeezing:
some information always leaked to adversaries
 

● Mutual information can be bounded
 

● High enough squeezing: 
bound information leak (optimal cloning)

● For infinite squeezing: ramp scheme:

 → reconstruct

→ no information

→ some secret quadratures w/o anti-sqzelse

Habibidavijani & Sanders 
arXiv:1904.09506  (2019)
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Summary

● Protocol for sharing any bosonic state using
1)Squeezed states
2)Random passive transformations (linear optics)

● Still works for realistic squeezing values

● Decoding is also Gaussian

● Generalizes random erasure correcting codes to CV
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● Experiments?

TODO:
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Summary

● Protocol for sharing any bosonic state using
1)Squeezed states
2)Random passive transformations (linear optics)

● Still works for realistic squeezing values

● Decoding is also Gaussian

● Generalizes random erasure correcting codes to CV 

Thank you!

● Losses?
● Optimize interferometer?
● Experiments?

TODO:
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Decoding conditions

→ polynomial equations for coefficients of SL

→ zeros («bad» matrices) are lower dimensional sets of  U(n)
→ Zero Haar (constant) measure

Goal: 1) Get rid of these
 

2) solve for these

For each A, find R s.t 
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