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* Access parties: Authorized subsets of players
* Adversary structure: Groups that should not get information
 Threshold schemes: any k or more players are authorized 7



Several configurations

CC: Classical information shared using classical resources

CQ: Classical information shared using quantum resources
— Improved security ~ multipartite QKD

QQ: The secret is a guantum state
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* Several proposals in CV...
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* CV cluster state - based protocols
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So what's new?

 random encoding! (...almost any passive interferometer)

 Multi-mode secrets

Why would | care?

* Useful to design experiments
* Potentially applicable to share interesting/useful states
* Connections with relativity & black holes (via error correction)

Hayden & May arXiv:1806.04154 (2018)
Wu, Khalid & Sanders NJP 20 (2018)
Hayden & Preskill JHEP (2007)
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Outline

e Continuous-variable systems
* (Prologue & ) Main result

» Sketch of the proof

* Quality of the scheme(s)

e Conclusions
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Continuous variables



DV and CV, Gaussian states

1)

DV : information encoded in qu-bits CV : information encoded in observables with
continuous spectrum, e.g.: ¢, P

Optical ex: Optical ex:

Polarization of . Field quadratures

single photon L, A ~ At

Egog xa+a
g lar,

— Ep oci(a’ —a
v Beci-a
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DV and CV, Gaussian states

DV : information encoded in qu-bits CV : information encoded in observables with
continuous spectrum, e.g.: ¢, P

Optical ex: Optical ex:

Polarization of . Field quadratures
. single photon g ~ R A
3 EQ X a-+ a

W e
— Ep xi(a’ —a
1) AFE, P ( )
> E,

Wigner function ~ quantum optical phase space

Gaussian states: .
May be negative!

) — Wy(g, p) 4 N
[wwap=tawr | T p|

/dq Wig.p) =l{p )] Vacuum — symmetric Squeezing q - 20



Squeezed states
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Squeezmg

Reduced fluctuations in g or p

4

In the limit, eigen-states of g or p
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Squeezed states

4 "\ Reduced fluctuations in gorp

/ -

P In the limit, eigen-states of g or p
q

\ Squeezin;; /

Workhorse of CV Quantum information:

e Easy to produce in the lab (non-linear optical media)
* Deterministic entanglement with passive linear optics
* Used for quantum teleportation

* Experimental production of CV graph states

22



Main result

FA, G. Ferrini, F. Grosshans, D. Markham, PRA 100, 022303 (2019)
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A quantum (3,5) scheme with graph states

P. Van Loock & D. Markham, AIP Conf. Proc. 1363, 256, (2011)
Start Teleportation Secret is encoded

(CV) Bell Measurement
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A quantum (3,5) scheme with graph states

P. Van Loock & D. Markham, AIP Conf. Proc. 1363, 256, (2011)
Start Teleportation Secret is encoded

(CV) Bell Measurement

Ideal cluster states : momentum eigenstates + C,s (entangling gates)
Realistic cluster states : squeezed states + C,s (entangling gates)

—

Experiments : squeezed states + linear optics

What's the most general interferometer that does the trick ?
27

Motivated by actual experimental setup : Y. Cai, et al, Nat. Comm. 8, 15645 (2017)
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» A general scheme
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Derive conditions on the interferometer such
that each access party can either: « \Measure secret quadratures

* Physically reconstruct the secret
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Derive conditions on the interferometer such
that each access party can either: « \Measure secret quadratures

* Physically reconstruct the secret

Almost any passive interferometer can do

(In the sense of Haar measure) 30



Sketch of the proof



Gaussian transformations and Symplectic matrices

52(2) 55 &kl = 15k J(_OH g)

Standard symplectic form
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Gaussian transformations and Symplectic matrices

52(2) 55 &kl = 15k J(_OH g)

Standard symplectic form

Unitary Gaussian transformations Symplectic Group
UééUG =Sé+x=¢ &6 =idp = STIS=1J
P > Sp (2n, R)
Symplectic Phase-space

translation
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Gaussian transformations and Symplectic matrices

52(2) 55 &kl = 15k J(_OH g)

Standard symplectic form

Unitary Gaussian transformations Symplectic Group
UleUg = SE+a=¢ (66 =i > sTIs=J
P > Sp (2n, R)
Symplectic Phase-space
translation

Any S
composing:
Linear optics (passive interferometers):

S = Ri1KR> (X Y), X +iY € U (n)

)

E=1{y x
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Decoding conditions

€A _ MAqsqz 4+ NApsqz 4+ HA€S
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Decoding conditions

¢! @ - 4

Goal: 1) Get rid of these
2) solve for these
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. . sqz rigl?
Decoding conditions ( L ) = ( ) )

D; e "ip;

" = g v+ 1E
\ 7 For each A, find R s.t
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2) solve for these det (RHA) £ ()
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" = g v+ 1E
\ 7 For each A, find R s.t

Goal: 1) Get rid of these / RMA =0 <k>m+ [EW
o 2

2) solve for these det (RHA) # 0
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Decoding conditions G )= Y
P, e=rip®

M@ NAp™ + HAE
For each A, find R s.t

Goal.1)Getr|dofthese RMA =0 <:k>m—|—[ ]
2) solve for these det (RHA) # 0

det (RHA) — () —«bad» matrices = lower dimensional set of U(n)
— Zero Haar (constant) measure

U (n) ~Sp(2n,R)N O (2n)

B <4

«bad» matrices
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. . sqz rigl?
Decoding conditions ( e ) = ( o) )

For each A, find R s.t

Goal: 1) Get rid of these RMA =0 <:k2m—|—(ﬁw
2) solve for these det (RHA) ?é 0 2

det (RHA) — () —«bad» matrices = lower dimensional set of U(n)
— Zero Haar (constant) measure

U (n) ~ Sp (2n,R) N O (2n) if S & B: Acan sample

n—1 1=k
z A . A
B ds + Z Bup?q = Z QU (Cos 0;Q5 +sinb; P; )
4’_\ =1 j=1 ’ ’

«bad» matrices
Or construct a unitary Gaussian decoding



Reconstruction by authorized sets

Coherent state secret:
FA(r)=1/y/1+ o2 (rXn)+ o (r)(©)

Depend on §,
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Reconstruction by authorized sets

Coherent state secret:
FA(r)=1/y/1+ o2 (rXn)+ o (r)(©)

Depend on §,

Random

Best of 1k
F(r)
o
(9] ]

0 5 10 15 20 25 30
o?(r)(dB)
2 out of 3 players try to reconstruct 1 secret mode
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Reconstruction by authorized sets

Coherent state secret: Any state: Wous (§) = / 1] dyjj—m— Win (§€ — By)
- iV 2T
FA(r)=1/y/1+ o2 (rXn)+ o (r)(©)
— eigenvaluesof A — BAZ2RBT

Depend on §,

Random

Best of 1k
F(r)
o
(@)

0 5 10 15 20 25 30
o?(r)(dB)
2 out of 3 players try to reconstruct 1 secret mode

A2 :diag(af,...,a

43
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Coherent state secret:

Reconstruction by authorized sets 2

n e 20’2
Any state: W, = / dy;—— | Win (€ — B
y t(‘S) J;’l_[l yj Uj\/% (£ y)

FA(r)=1/y/1+ o2 (rXn)+ o (r)(©)

Random

Best of 1k

F(n)

— eigenvaluesof A — BA2RT
A? = diag (O'%, . ,02)

n

Depend on §,

0.75

0.5

0.25

0_|

A
1_
\\
B
\\«....-__ _____ A)Entanglement
O 5 10 15 20 25 30 Dbreaking
0¥ (r)(dB) 0(r)(dB) B)Best copy
A
1_
k:
B
0 5 10 15 20 25 30 0 5 10 15 20 25 30
a?(r)(dB) 44

o?(r)(dB)
2 out of 3 players try to reconstruct 1 secret mode



Unauthorized subsets

* Finite squeezing:
some information always leaked to adversaries
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Unauthorized subsets

* Finite squeezing:
some information always leaked to adversaries

. - . Habibidavijani & Sanders
Mutual information can be bounded . /504 09506 (2019)

* High enough squeezing:
bound information leak (optimal cloning)

* For infinite squeezing: ramp scheme:
n
k>m+ (5] — reconstruct

I < (gw — no information

else — Some secret quadratures w/o anti-sqz
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Summary

* Protocol for sharing any bosonic state using
1)Squeezed states
2)Random passive transformations (linear optics)
 Still works for realistic squeezing values

* Decoding is also Gaussian

* Generalizes random erasure correcting codes to CV

49



Summary

* Protocol for sharing any bosonic state using
1)Squeezed states
2)Random passive transformations (linear optics)

« Still works for realistic squeezing values
* Decoding is also Gaussian
* Generalizes random erasure correcting codes to CV

TODO:
* Losses?
* Optimize interferometer?
e EXperiments?

50



Summary

* Protocol for sharing any bosonic state using
1)Squeezed states
2)Random passive transformations (linear optics)

« Still works for realistic squeezing values
* Decoding is also Gaussian
* Generalizes random erasure correcting codes to CV

TODO:

* Losses?
* Optimize interferometer?
e EXperiments?

Thank you!
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Decoding conditions G )= Y
P, e=rip®

J

For each A, find R s.t

7
Goal: 1) Get rid of these / RM4 =0 «:k2m+(gW

2) solve for these det (RHA) # 0

det (RH A) = () — polynomial equations for coefficients of S,
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. . sqz rigl?
Decoding conditions ( Lo ) = ( "L )

For each A, find R s.t

Goal: 1) Get rid of these RMA =0 <:k2m—|—(ﬁw
2) solve for these det (RHA) ?é 0 2
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. . sqz rigl?
Decoding conditions ( e ) = ( o) )

p; e~ "ip,
¢=M NAp* @ + HAE
\ For each A, find R s.t
Goal: 1) Get rid of these RM* =0 <:k2m+(gl
2) solve for these det ( R HA) 2 ()

det (RHA) = () — polynomial equations for coefficients of S,

— zeros («bad» matrices) are lower dimensional sets of U(n)
— Zero Haar (constant) measure

U (n) ~ Sp (2n,R) N O (2n) if S & B: Acan sample

n—1 1=k
z A . A
B ds + Z Bup?q = Z QU (Cos 0;Q5 +sinb; P; )
4’_\ =1 j=1 ’ ’

«bad» matrices
Or construct a unitary Gaussian decoding



