Gottesman-Kitaev-Preskill bosonic error correcting codes: a lattice perspective

Jonathan Conrad, Francesco Arzani, Jens Eisert

(Quantum) Error correction and harmonic oscillators

Information always encoded in phys. syst.
\square Always subject to noise

(Quantum) Error correction and harmonic oscillators

Information always encoded in phys. syst.
\square Always subject to noise
Error correction: redundancy

(Quantum) Error correction and harmonic oscillators

Information always encoded in phys. syst.
\square Always subject to noise
Error correction: redundancy

(Quantum) Error correction and harmonic oscillators

号
Information always encoded in phys. syst.
\square Always subject to noise
Error correction: redundancy
Quantum: mostly qubits $\alpha|0\rangle+\beta|1\rangle$

(Quantum) Error correction and harmonic oscillators

Information always encoded in phys. syst.
\square Always subject to noise
Error correction: redundancy
Quantum: mostly qubits $\alpha|0\rangle+\beta|1\rangle$
Bosonic codes: oscillators

EM field mode, LC circuit, ...

(Quantum) Error correction and harmonic oscillators

Information always encoded in phys. syst.
\square Always subject to noise
Error correction: redundancy
Quantum: mostly qubits $\alpha|0\rangle+\beta|1\rangle$
Bosonic codes: oscillators

$$
\begin{gathered}
\hat{\boldsymbol{x}}=\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)^{T} \\
{\left[\hat{x}_{j}, \hat{x}_{k}\right]=i J_{j k}} \\
J=\left(\begin{array}{cc}
\mathbf{0} & \mathbb{I} \\
-\mathbb{I} & \mathbf{0}
\end{array}\right)
\end{gathered}
$$

EM field mode, LC circuit, ...

(Quantum) Error correction and harmonic oscillators

Information always encoded in phys. syst.

$$
W_{\rho}(\boldsymbol{q}, \boldsymbol{p})=(2 \pi)^{-2 n} \int \mathrm{~d}^{n} \boldsymbol{y}\left\langle\boldsymbol{q}-\frac{\boldsymbol{y}}{2}\right| \hat{\rho}\left|\boldsymbol{q}+\frac{\boldsymbol{y}}{2}\right\rangle e^{i \boldsymbol{p} \cdot \boldsymbol{y}}
$$

\square Always subject to noise

Error correction: redundancy

Quantum: mostly qubits $\alpha|0\rangle+\beta|1\rangle$ Bosonic codes: oscillators

$$
\begin{gathered}
\hat{\boldsymbol{x}}=\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)^{T} \\
{\left[\hat{x}_{j}, \hat{x}_{k}\right]=i J_{j k}}
\end{gathered}
$$

EM field mode, LC circuit, ...

$$
J=\left(\begin{array}{cc}
0 & \mathbb{I} \\
-\mathbb{I} & 0
\end{array}\right)
$$

(Quantum) Error correction and harmonic oscillators

Information always encoded in phys. syst.
\square Always subject to noise
Error correction: redundancy
Quantum: mostly qubits $\alpha|0\rangle+\beta|1\rangle$ Bosonic codes: oscillators

$$
\begin{gathered}
\hat{\boldsymbol{x}}=\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)^{T} \\
{\left[\hat{x}_{j}, \hat{x}_{k}\right]=i J_{j k}} \\
\quad J=\left(\begin{array}{cc}
\mathbf{0} & \mathbb{I} \\
-\mathbb{I} & \mathbf{0}
\end{array}\right)
\end{gathered}
$$

Phase space:

$$
W_{\rho}(\boldsymbol{q}, \boldsymbol{p})=(2 \pi)^{-2 n} \int \mathrm{~d}^{n} \boldsymbol{y}\left\langle\boldsymbol{q}-\frac{\boldsymbol{y}}{2}\right| \hat{\rho}\left|\boldsymbol{q}+\frac{\boldsymbol{y}}{2}\right\rangle e^{i \boldsymbol{p} \cdot \boldsymbol{y}}
$$

q

q

q

Displacements:

$$
D^{\dagger}(\boldsymbol{\xi}) \hat{\boldsymbol{x}} D(\boldsymbol{\xi})=\hat{\boldsymbol{x}}+\sqrt{2 \pi} \boldsymbol{\xi}
$$

(Quantum) Error correction and harmonic oscillators

Information always encoded in phys. syst.
\square Always subject to noise
Error correction: redundancy
Quantum: mostly qubits $\alpha|0\rangle+\beta|1\rangle$ Bosonic codes: oscillators

$$
\begin{gathered}
\hat{\boldsymbol{x}}=\left(q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}\right)^{T} \\
{\left[\hat{x}_{j}, \hat{x}_{k}\right]=i J_{j k}} \\
\quad J=\left(\begin{array}{cc}
\mathbf{0} & \mathbb{I} \\
-\mathbb{I} & \mathbf{0}
\end{array}\right)
\end{gathered}
$$

EM field mode, LC circuit, ...

$$
W_{\rho}(\boldsymbol{q}, \boldsymbol{p})=(2 \pi)^{-2 n} \int \mathrm{~d}^{n} \boldsymbol{y}\left\langle\boldsymbol{q}-\frac{\boldsymbol{y}}{2}\right| \hat{\rho}\left|\boldsymbol{q}+\frac{\boldsymbol{y}}{2}\right\rangle e^{i \boldsymbol{p} \cdot \boldsymbol{y}}
$$

q

Displacements:

$$
D^{\dagger}(\boldsymbol{\xi}) \hat{\boldsymbol{x}} D(\boldsymbol{\xi})=\hat{\boldsymbol{x}}+\sqrt{2 \pi} \boldsymbol{\xi}
$$

$$
D(\boldsymbol{\xi}) D(\boldsymbol{\eta})=e^{-i 2 \pi \boldsymbol{\xi}^{T} J \boldsymbol{\eta}} D(\boldsymbol{\eta}) D(\boldsymbol{\xi})
$$

Encoding qubits on a lattice

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

Encoding qubits on a lattice

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! Grid codes: stabilized by (commuting) displacement operators \rightarrow underlying lattice

Encoding qubits on a lattice

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! Grid codes: stabilized by (commuting) displacement operators \rightarrow underlying lattice Gottesman, Kitaev, Preskill PRA 64 (2001)

$$
\begin{aligned}
\mathcal{S}= & \left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle \square \text { code: } D\left(\boldsymbol{\xi}_{j}\right)|\psi\rangle=|\psi\rangle \\
& \boldsymbol{\xi}_{j}^{T} J \boldsymbol{\xi}_{k} \in \mathbb{Z}
\end{aligned}
$$

Encoding qubits on a lattice

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! Grid codes: stabilized by (commuting) displacement operators \rightarrow underlying lattice Gottesman, Kitaev, Preskill PRA 64 (2001)

$$
\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle \square \text { code: } D\left(\boldsymbol{\xi}_{j}\right)|\psi\rangle=|\psi\rangle
$$

$$
\boldsymbol{\xi}_{j}^{T} J \boldsymbol{\xi}_{k} \in \mathbb{Z}
$$

\rightarrow Lattice of translations \mathcal{L}
\rightarrow Logical operations: dual \mathcal{L}^{\perp}

Encoding qubits on a lattice

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! Grid codes: stabilized by (commuting) displacement operators \rightarrow underlying lattice Gottesman, Kitaev, Preskill PRA 64 (2001)

$$
\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle \square \text { code: } D\left(\boldsymbol{\xi}_{j}\right)|\psi\rangle=|\psi\rangle
$$

$$
\boldsymbol{\xi}_{j}^{T} J \boldsymbol{\xi}_{k} \in \mathbb{Z}
$$

\rightarrow Lattice of translations \mathcal{L}
\rightarrow Logical operations: dual \mathcal{L}^{\perp}

$$
S_{q}=e^{i 2 \sqrt{\pi} \hat{q}} \quad S_{p}=e^{-i 2 \sqrt{\pi} \hat{p}}
$$

${ }^{p}$

Encoding qubits on a lattice

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! Grid codes: stabilized by (commuting) displacement operators \rightarrow underlying lattice Gottesman, Kitaev, Preskill PRA 64 (2001)

$$
\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle \square \text { code: } D\left(\boldsymbol{\xi}_{j}\right)|\psi\rangle=|\psi\rangle
$$

$$
\boldsymbol{\xi}_{j}^{T} J \boldsymbol{\xi}_{k} \in \mathbb{Z}
$$

\rightarrow Lattice of translations \mathcal{L}
\rightarrow Logical operations: dual \mathcal{L}^{\perp}

$$
S_{q}=e^{i 2 \sqrt{\pi} \hat{q}} \quad S_{p}=e^{-i 2 \sqrt{\pi} \hat{p}}
$$

Encoding qubits on a lattice

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! Grid codes: stabilized by (commuting) displacement operators \rightarrow underlying lattice Gottesman, Kitaev, Preskill PRA 64 (2001)

$$
\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle \square \text { code: } D\left(\boldsymbol{\xi}_{j}\right)|\psi\rangle=|\psi\rangle
$$

$$
\boldsymbol{\xi}_{j}^{T} J \boldsymbol{\xi}_{k} \in \mathbb{Z}
$$

\rightarrow Lattice of translations \mathcal{L}
\rightarrow Logical operations: dual \mathcal{L}^{\perp}

$$
S_{q}=e^{i 2 \sqrt{\pi} \hat{q}} S_{p}=e^{-i 2 \sqrt{\pi} \hat{p}}
$$

$$
\uparrow^{p}
$$

Encoding qubits on a lattice

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! Grid codes: stabilized by (commuting) displacement operators \rightarrow underlying lattice Gottesman, Kitaev, Preskill PRA 64 (2001)

$$
\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle \square \text { code: } D\left(\boldsymbol{\xi}_{j}\right)|\psi\rangle=|\psi\rangle
$$

$$
\boldsymbol{\xi}_{j}^{T} J \boldsymbol{\xi}_{k} \in \mathbb{Z}
$$

\rightarrow Lattice of translations \mathcal{L}
\rightarrow Logical operations: dual \mathcal{L}^{\perp}

$$
S_{q}=e^{i 2 \sqrt{\pi} \hat{q}} \quad S_{p}=e^{-i 2 \sqrt{\pi} \hat{p}}
$$

Encoding qubits on a lattice

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! Grid codes: stabilized by (commuting) displacement operators \rightarrow underlying lattice Gottesman, Kitaev, Preskill PRA 64 (2001)
$\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle \square$ code: $D\left(\boldsymbol{\xi}_{j}\right)|\psi\rangle=|\psi\rangle$ $\boldsymbol{\xi}_{j}^{T} J \boldsymbol{\xi}_{k} \in \mathbb{Z}$
\rightarrow Lattice of translations \mathcal{L}
\rightarrow Logical operations: dual \mathcal{L}^{\perp}

$$
S_{q}=e^{i 2 \sqrt{\pi} \hat{q}} \quad S_{p}=e^{-i 2 \sqrt{\pi} \hat{p}}
$$

Encoding qubits on a lattice

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! Grid codes: stabilized by (commuting) displacement operators \rightarrow underlying lattice Gottesman, Kitaev, Preskill PRA 64 (2001)
$\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle \square$ code: $D\left(\boldsymbol{\xi}_{j}\right)|\psi\rangle=|\psi\rangle$ $\boldsymbol{\xi}_{j}^{T} J \boldsymbol{\xi}_{k} \in \mathbb{Z}$
\rightarrow Lattice of translations \mathcal{L}
\rightarrow Logical operations: dual \mathcal{L}^{\perp}

$$
S_{q}=e^{i 2 \sqrt{\pi} \hat{q}} \quad S_{p}=e^{-i 2 \sqrt{\pi} \hat{p}}
$$

- Good against common noise

Albert et al, PRA 97 (2018)

Encoding qubits on a lattice

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! Grid codes: stabilized by (commuting) displacement operators \rightarrow underlying lattice Gottesman, Kitaev, Preskill PRA 64 (2001)
$\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle \square$ code: $D\left(\boldsymbol{\xi}_{j}\right)|\psi\rangle=|\psi\rangle$ $\xi_{j}^{T} J \boldsymbol{\xi}_{k} \in \mathbb{Z}$
\rightarrow Lattice of translations \mathcal{L}
\rightarrow Logical operations: dual \mathcal{L}^{\perp}

- Good against common noise

Albert et al, PRA 97 (2018)

- Logical Clifford = Gaussian operations

$$
S_{q}=e^{i 2 \sqrt{\pi} \hat{q}} \quad S_{p}=e^{-i 2 \sqrt{\pi} \hat{p}}
$$

Encoding qubits on a lattice

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! Grid codes: stabilized by (commuting) displacement operators \rightarrow underlying lattice Gottesman, Kitaev, Preskill PRA 64 (2001)
$\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle \square$ code: $D\left(\boldsymbol{\xi}_{j}\right)|\psi\rangle=|\psi\rangle$ $\xi_{j}^{T} J \xi_{k} \in \mathbb{Z}$
\rightarrow Lattice of translations \mathcal{L}
\rightarrow Logical operations: dual \mathcal{L}^{\perp}

$$
S_{q}=e^{i 2 \sqrt{\pi} \hat{q}} \quad S_{p}=e^{-i 2 \sqrt{\pi} \hat{p}}
$$

- Good against common noise

Albert et al, PRA 97 (2018)

- Logical Clifford = Gaussian operations
- Can be effective qubits, combined with qubit codes

Vuillot et al, PRA 99 (2019) Noh\&Chamberland PRA 101 (2020) Bourassa et al, Quantum 5 (2021)

Encoding qubits on a lattice

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! Grid codes: stabilized by (commuting) displacement operators \rightarrow underlying lattice Gottesman, Kitaev, Preskill PRA 64 (2001)
$\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle \square$ code: $D\left(\boldsymbol{\xi}_{j}\right)|\psi\rangle=|\psi\rangle$ $\boldsymbol{\xi}_{j}^{T} J \boldsymbol{\xi}_{k} \in \mathbb{Z}$

\rightarrow Lattice of translations \mathcal{L}
\rightarrow Logical operations: dual \mathcal{L}^{\perp}

$$
S_{q}=e^{i 2 \sqrt{\pi} \hat{q}} \quad S_{p}=e^{-i 2 \sqrt{\pi} \hat{p}}
$$

- Good against common noise

Albert et al, PRA 97 (2018)

- Logical Clifford = Gaussian operations
- Can be effective qubits, combined with qubit codes

Vuillot et al, PRA 99 (2019) Noh\&Chamberland PRA 101 (2020) Bourassa et al, Quantum 5 (2021)

- Can protect CV systems

Noh et al, PRL 125 (2020)

Encoding qubits on a lattice

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! Grid codes: stabilized by (commuting) displacement operators \rightarrow underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001)
$\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle \square$ code: $D\left(\boldsymbol{\xi}_{j}\right)|\psi\rangle=|\psi\rangle$

$$
\boldsymbol{\xi}_{j}^{T} J \boldsymbol{\xi}_{k} \in \mathbb{Z}
$$

\rightarrow Lattice of translations \mathcal{L}
\rightarrow Logical operations: dual \mathcal{L}^{\perp}

$$
S_{q}=e^{i 2 \sqrt{\pi} \hat{q}} \quad S_{p}=e^{-i 2 \sqrt{\pi} \hat{p}}
$$

- Good against common noise

Albert et al, PRA 97 (2018)

- Logical Clifford = Gaussian operations
- Can be effective qubits, combined with qubit codes

Vuillot et al, PRA 99 (2019) Noh\&Chamberland PRA 101 (2020) Bourassa et al, Quantum 5 (2021)

- Can protect CV systems

Noh et al, PRL 125 (2020)

- Logical states experimentally accessible

The lattice point of view

The lattice point of view

For exponential noise suppression: more oscillators

The lattice point of view

For exponential noise suppression: more oscillators
Up to now: concatenation \rightarrow regard as effective qubits, add qubit-level code

The lattice point of view

For exponential noise suppression: more oscillators
Up to now: concatenation \rightarrow regard as effective qubits, add qubit-level code
\rightarrow "lattice picture" only for individual oscillators, not for whole code

The lattice point of view

For exponential noise suppression: more oscillators
Up to now: concatenation \rightarrow regard as effective qubits, add qubit-level code
\rightarrow "lattice picture" only for individual oscillators, not for whole code

Q: Can lattice properties be exploited more?

The lattice point of view

For exponential noise suppression: more oscillators
Up to now: concatenation \rightarrow regard as effective qubits, add qubit-level code
\rightarrow "lattice picture" only for individual oscillators, not for whole code

Q: Can lattice properties be exploited more?

Outline

1. Lattice formalism
2. Code properties from lattice bases
3. Symplectic operations
4. Distance bounds for GKP codes
5. Decoding problem and Θ functions
6. GKP codes beyond concatenation

Lattice formalism

$\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\xi_{2 n}\right)\right\rangle$

$$
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T}
$$

Lattice formalism

$$
\begin{aligned}
\mathcal{S}= & \left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle \quad A_{j k}=\left(M J M^{T}\right)_{j k} \in \mathbb{Z} \Rightarrow\left[D\left(\boldsymbol{\xi}_{j}\right), D\left(\boldsymbol{\xi}_{k}\right)\right]=0 \\
& M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T}
\end{aligned}
$$

Lattice formalism

$$
\begin{aligned}
\mathcal{S}= & \left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle \\
& M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T}
\end{aligned}
$$

$$
\begin{aligned}
& A_{j k}=\left(M J M^{T}\right)_{j k} \in \mathbb{Z} \Rightarrow\left[D\left(\xi_{j}\right), D\left(\xi_{k}\right)\right]=0 \\
& \quad \operatorname{det} M \neq 0 \Rightarrow d<\infty
\end{aligned}
$$

Lattice formalism

$$
\begin{aligned}
\mathcal{S}= & \left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle \\
& M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T}
\end{aligned}
$$

$$
A_{j k}=\left(M J M^{T}\right)_{j k} \in \mathbb{Z} \Rightarrow\left[D\left(\boldsymbol{\xi}_{j}\right), D\left(\xi_{k}\right)\right]=0
$$

$$
\operatorname{det} M \neq 0 \Rightarrow d<\infty
$$

$$
D(\boldsymbol{\xi}) D(\boldsymbol{\eta})=e^{-i \pi \xi^{T} J \boldsymbol{\eta}} D(\boldsymbol{\xi}+\boldsymbol{\eta})
$$

Lattice formalism

$$
\begin{array}{cc}
\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle & A_{j k}=\left(M J M^{T}\right)_{j k} \in \mathbb{Z} \Rightarrow\left[D\left(\boldsymbol{\xi}_{j}\right), D\left(\xi_{k}\right)\right]=0 \\
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T} & \operatorname{det} M \neq 0 \Rightarrow d<\infty
\end{array}
$$

$$
D(\boldsymbol{\xi}) D(\boldsymbol{\eta})=e^{-i \pi \boldsymbol{\xi}^{T} J \boldsymbol{\eta}} D(\boldsymbol{\xi}+\boldsymbol{\eta}) \breve{(-1)^{f(\boldsymbol{a}, M)} D\left(\boldsymbol{a}^{T} M\right) \in \mathcal{S} \forall \boldsymbol{a} \in \mathbb{Z}^{2 n}, ~}
$$

Lattice formalism

$$
\begin{array}{cc}
\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle & A_{j k}=\left(M J M^{T}\right)_{j k} \in \mathbb{Z} \Rightarrow\left[D\left(\boldsymbol{\xi}_{j}\right), D\left(\boldsymbol{\xi}_{k}\right)\right]=0 \\
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T} & \operatorname{det} M \neq 0 \Rightarrow d<\infty
\end{array}
$$

$$
D(\boldsymbol{\xi}) D(\boldsymbol{\eta})=e^{-i \pi \boldsymbol{\xi}^{T} J \boldsymbol{\eta}} D(\boldsymbol{\xi}+\boldsymbol{\eta}) \breve{(-1)^{f(\boldsymbol{a}, M)} D\left(\boldsymbol{a}^{T} M\right) \in \mathcal{S} \forall \boldsymbol{a} \in \mathbb{Z}^{2 n}, ~}
$$

$$
\mathcal{S} \simeq \mathcal{L}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{2 n} \mid \boldsymbol{\xi}^{T}=\boldsymbol{a}^{T} M, \boldsymbol{a} \in \mathbb{Z}^{2 n}\right\}
$$

Lattice formalism

$$
\begin{array}{cc}
\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle & A_{j k}=\left(M J M^{T}\right)_{j k} \in \mathbb{Z} \Rightarrow\left[D\left(\boldsymbol{\xi}_{j}\right), D\left(\boldsymbol{\xi}_{k}\right)\right]=0 \\
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T} & \operatorname{det} M \neq 0 \Rightarrow d<\infty
\end{array}
$$

$$
D(\boldsymbol{\xi}) D(\boldsymbol{\eta})=e^{-i \pi \boldsymbol{\xi}^{T} J \boldsymbol{\eta}} D(\boldsymbol{\xi}+\boldsymbol{\eta}) \longleftrightarrow(-1)^{f(\boldsymbol{a}, M)} D\left(\boldsymbol{a}^{T} M\right) \in \mathcal{S} \forall \boldsymbol{a} \in \mathbb{Z}^{2 n}
$$

$$
\mathcal{S} \simeq \mathcal{L}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{2 n} \mid \boldsymbol{\xi}^{T}=\boldsymbol{a}^{T} M, \boldsymbol{a} \in \mathbb{Z}^{2 n}\right\}
$$

Logical Pauli: $\quad \mathcal{L}^{\perp}=\left\{\boldsymbol{\xi}^{\perp} \in \mathbb{R}^{2 n} \mid\left(\boldsymbol{\xi}^{\perp}\right)^{T} J \boldsymbol{\xi} \in \mathbb{Z} \forall \boldsymbol{\xi} \in \mathcal{L}\right\}$

Lattice formalism

$$
\begin{array}{cc}
\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle & A_{j k}=\left(M J M^{T}\right)_{j k} \in \mathbb{Z} \Rightarrow\left[D\left(\boldsymbol{\xi}_{j}\right), D\left(\boldsymbol{\xi}_{k}\right)\right]=0 \\
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T} & \operatorname{det} M \neq 0 \Rightarrow d<\infty
\end{array}
$$

$$
D(\boldsymbol{\xi}) D(\boldsymbol{\eta})=e^{-i \pi \boldsymbol{\xi}^{T} J \boldsymbol{\eta}} D(\boldsymbol{\xi}+\boldsymbol{\eta}) \longleftrightarrow(-1)^{f(\boldsymbol{a}, M)} D\left(\boldsymbol{a}^{T} M\right) \in \mathcal{S} \forall \boldsymbol{a} \in \mathbb{Z}^{2 n}
$$

$$
\mathcal{S} \simeq \mathcal{L}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{2 n} \mid \boldsymbol{\xi}^{T}=\boldsymbol{a}^{T} M, \boldsymbol{a} \in \mathbb{Z}^{2 n}\right\}
$$

Logical Pauli: $\quad \mathcal{L}^{\perp}=\left\{\boldsymbol{\xi}^{\perp} \in \mathbb{R}^{2 n} \mid\left(\boldsymbol{\xi}^{\perp}\right)^{T} J \boldsymbol{\xi} \in \mathbb{Z} \forall \boldsymbol{\xi} \in \mathcal{L}\right\} \quad M^{\perp}=\left(J M^{T}\right)^{-1}$

Lattice formalism

$$
\begin{array}{cc}
\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle & A_{j k}=\left(M J M^{T}\right)_{j k} \in \mathbb{Z} \Rightarrow\left[D\left(\boldsymbol{\xi}_{j}\right), D\left(\boldsymbol{\xi}_{k}\right)\right]=0 \\
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T} & \operatorname{det} M \neq 0 \Rightarrow d<\infty
\end{array}
$$

$$
D(\boldsymbol{\xi}) D(\boldsymbol{\eta})=e^{-i \pi \boldsymbol{\xi}^{T} J \boldsymbol{\eta}} D(\boldsymbol{\xi}+\boldsymbol{\eta}) \longleftrightarrow(-1)^{f(\boldsymbol{a}, M)} D\left(\boldsymbol{a}^{T} M\right) \in \mathcal{S} \forall \boldsymbol{a} \in \mathbb{Z}^{2 n}
$$

$$
\mathcal{S} \simeq \mathcal{L}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{2 n} \mid \boldsymbol{\xi}^{T}=\boldsymbol{a}^{T} M, \boldsymbol{a} \in \mathbb{Z}^{2 n}\right\}
$$

Logical Pauli: $\quad \mathcal{L}^{\perp}=\left\{\boldsymbol{\xi}^{\perp} \in \mathbb{R}^{2 n} \mid\left(\boldsymbol{\xi}^{\perp}\right)^{T} J \boldsymbol{\xi} \in \mathbb{Z} \forall \boldsymbol{\xi} \in \mathcal{L}\right\} \quad M^{\perp}=\left(J M^{T}\right)^{-1}$
Log. dim. : $\quad d^{2}=\left|\mathcal{L}^{\perp} / \mathcal{L}\right|=|\operatorname{det} M| /\left|\operatorname{det} M^{\perp}\right|=\operatorname{det} A=(\operatorname{det} M)^{2}$

Lattice formalism

$$
\begin{array}{cc}
\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle & A_{j k}=\left(M J M^{T}\right)_{j k} \in \mathbb{Z} \Rightarrow\left[D\left(\boldsymbol{\xi}_{j}\right), D\left(\boldsymbol{\xi}_{k}\right)\right]=0 \\
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T} & \operatorname{det} M \neq 0 \Rightarrow d<\infty
\end{array}
$$

$$
D(\boldsymbol{\xi}) D(\boldsymbol{\eta})=e^{-i \pi \boldsymbol{\xi}^{T} J \boldsymbol{\eta}} D(\boldsymbol{\xi}+\boldsymbol{\eta}) \longleftrightarrow(-1)^{f(\boldsymbol{a}, M)} D\left(\boldsymbol{a}^{T} M\right) \in \mathcal{S} \forall \boldsymbol{a} \in \mathbb{Z}^{2 n}
$$

$$
\mathcal{S} \simeq \mathcal{L}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{2 n} \mid \boldsymbol{\xi}^{T}=\boldsymbol{a}^{T} M, \boldsymbol{a} \in \mathbb{Z}^{2 n}\right\}
$$

Logical Pauli: $\quad \mathcal{L}^{\perp}=\left\{\boldsymbol{\xi}^{\perp} \in \mathbb{R}^{2 n} \mid\left(\boldsymbol{\xi}^{\perp}\right)^{T} J \boldsymbol{\xi} \in \mathbb{Z} \forall \boldsymbol{\xi} \in \mathcal{L}\right\} \quad M^{\perp}=\left(J M^{T}\right)^{-1}$
Log. dim. : $\quad d^{2}=\left|\mathcal{L}^{\perp} / \mathcal{L}\right|=|\operatorname{det} M| /\left|\operatorname{det} M^{\perp}\right|=\operatorname{det} A=(\operatorname{det} M)^{2}$
Change of basis: $M \mapsto U M \Rightarrow M^{\perp} \mapsto U^{-T} M^{\perp}$

Lattice formalism

$$
\begin{array}{cc}
\mathcal{S}=\left\langle D\left(\boldsymbol{\xi}_{1}\right), \ldots, D\left(\boldsymbol{\xi}_{2 n}\right)\right\rangle & A_{j k}=\left(M J M^{T}\right)_{j k} \in \mathbb{Z} \Rightarrow\left[D\left(\boldsymbol{\xi}_{j}\right), D\left(\boldsymbol{\xi}_{k}\right)\right]=0 \\
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T} & \operatorname{det} M \neq 0 \Rightarrow d<\infty
\end{array}
$$

$$
D(\boldsymbol{\xi}) D(\boldsymbol{\eta})=e^{-i \pi \boldsymbol{\xi}^{T} J \boldsymbol{\eta}} D(\boldsymbol{\xi}+\boldsymbol{\eta}) \breve{(-1)^{f(\boldsymbol{a}, M)} D\left(\boldsymbol{a}^{T} M\right) \in \mathcal{S} \forall \boldsymbol{a} \in \mathbb{Z}^{2 n}, ~}
$$

$$
\mathcal{S} \simeq \mathcal{L}=\left\{\boldsymbol{\xi} \in \mathbb{R}^{2 n} \mid \boldsymbol{\xi}^{T}=\boldsymbol{a}^{T} M, \boldsymbol{a} \in \mathbb{Z}^{2 n}\right\}
$$

Logical Pauli: $\quad \mathcal{L}^{\perp}=\left\{\boldsymbol{\xi}^{\perp} \in \mathbb{R}^{2 n} \mid\left(\boldsymbol{\xi}^{\perp}\right)^{T} J \boldsymbol{\xi} \in \mathbb{Z} \forall \boldsymbol{\xi} \in \mathcal{L}\right\} \quad M^{\perp}=\left(J M^{T}\right)^{-1}$
Log. dim. : $\quad d^{2}=\left|\mathcal{L}^{\perp} / \mathcal{L}\right|=|\operatorname{det} M| /\left|\operatorname{det} M^{\perp}\right|=\operatorname{det} A=(\operatorname{det} M)^{2}$
Change of basis: $M \mapsto U M \Rightarrow M^{\perp} \mapsto U^{-T} M^{\perp}$

$$
\rightrightarrows \quad A \mapsto\left(\begin{array}{cc}
0 & D \\
-D & 0
\end{array}\right)
$$

Examples

Lattice bases

Exploit basis manipulations/properties to study codes

$$
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T}
$$

Lattice bases

Exploit basis manipulations/properties to study codes
Theorem (Hadamard's bound):

$$
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T}
$$

Let $C=\max _{j}\left\|\boldsymbol{\xi}_{j}\right\|, d=2^{k}=\operatorname{det} M$. Then $k \leq 2 n \log _{2} C$

Lattice bases

Exploit basis manipulations/properties to study codes
Theorem (Hadamard's bound):

$$
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T}
$$

Let $C=\max _{j}\left\|\boldsymbol{\xi}_{j}\right\|, d=2^{k}=\operatorname{det} M$. Then $k \leq 2 n \log _{2} C$
\square Encoding ratio related to "experimental hardness"

Lattice bases

Exploit basis manipulations/properties to study codes
Theorem (Hadamard's bound):

$$
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T}
$$

Let $C=\max _{j}\left\|\boldsymbol{\xi}_{j}\right\|, d=2^{k}=\operatorname{det} M$. Then $k \leq 2 n \log _{2} C$
\square Encoding ratio related to "experimental hardness"
Resource savings from lattice basis reduction
Ex: L=3 surface code

Lattice bases

Exploit basis manipulations/properties to study codes
Theorem (Hadamard's bound):

$$
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T}
$$

$$
\text { Let } C=\max _{j}\left\|\boldsymbol{\xi}_{j}\right\|, d=2^{k}=\operatorname{det} M \text {. Then } k \leq 2 n \log _{2} C
$$

\square Encoding ratio related to "experimental hardness"
Resource savings from lattice basis reduction
Ex: L=3 surface code

Lattice bases

Exploit basis manipulations/properties to study codes
Theorem (Hadamard's bound):

$$
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T}
$$

Let $C=\max _{j}\left\|\boldsymbol{\xi}_{j}\right\|, d=2^{k}=\operatorname{det} M$. Then $k \leq 2 n \log _{2} C$
\longrightarrow Encoding ratio related to "experimental hardness"
Resource savings from lattice basis reduction
Ex: L=3 surface code

$\bigcirc \hat{q}_{j} \bmod 2 \pi$

- $\hat{p}_{j} \bmod 2 \pi$
- $\hat{S}_{L, j}^{X}=\sum_{l} a_{j l} \hat{x}_{l} \bmod 2 \pi$
- $\hat{S}_{L, j}^{Z}=\sum_{l}^{l} b_{j l} \hat{x}_{l} \bmod 2 \pi$

Lattice bases

Exploit basis manipulations/properties to study codes
Theorem (Hadamard's bound):

$$
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T}
$$

Let $C=\max _{j}\left\|\boldsymbol{\xi}_{j}\right\|, d=2^{k}=\operatorname{det} M$. Then $k \leq 2 n \log _{2} C$
\longrightarrow Encoding ratio related to "experimental hardness"
Resource savings from lattice basis reduction
Ex: L=3 surface code

Lattice bases

Exploit basis manipulations/properties to study codes
Theorem (Hadamard's bound):

$$
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T}
$$

Let $C=\max _{j}\left\|\boldsymbol{\xi}_{j}\right\|, d=2^{k}=\operatorname{det} M$. Then $k \leq 2 n \log _{2} C$
\longrightarrow Encoding ratio related to "experimental hardness"
Resource savings from lattice basis reduction
Ex: L=3 surface code

$\bigcirc \hat{q}_{j} \bmod 2 \pi$
$3 n-1=26$ stab.

$$
M_{\mathrm{conc}}=\binom{M_{\mathrm{GKP}}}{M_{\mathrm{Q}}}
$$

- $\hat{S}_{L, j}^{X}=\sum_{l} a_{j l} \hat{x}_{l} \bmod 2 \pi$
- $\hat{S}_{L, j}^{Z}=\sum_{l}^{l} b_{j l} \hat{x}_{l} \bmod 2 \pi$

Lattice bases

Exploit basis manipulations/properties to study codes
Theorem (Hadamard's bound):

$$
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T}
$$

Let $C=\max _{j}\left\|\boldsymbol{\xi}_{j}\right\|, d=2^{k}=\operatorname{det} M$. Then $k \leq 2 n \log _{2} C$
\square Encoding ratio related to "experimental hardness"
Resource savings from lattice basis reduction
Ex: L=3 surface code

$\hat{q}_{j} \bmod 2 \pi$
$3 n-1=26$ stab.

- $\hat{p}_{j} \bmod 2 \pi$
- $\hat{S}_{L, j}^{X}=\sum_{l} a_{j l} \hat{x}_{l} \bmod 2 \pi$
- $\hat{S}_{L, j}^{Z}=\sum_{l}^{l} b_{j l} \hat{x}_{l} \bmod 2 \pi$

$$
\begin{aligned}
& M_{\mathrm{conc}}=\binom{M_{\mathrm{GKP}}}{M_{\mathrm{Q}}} \\
& \sqrt{\square} \text { lattice basis reduction } \\
& M_{\min } 2 n=18 \text { stab. gens. }
\end{aligned}
$$

Lattice bases

Exploit basis manipulations/properties to study codes

$$
M=\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{2 n}\right)^{T}
$$

Theorem (Hadamard's bound):
Let $C=\max _{j}\left\|\boldsymbol{\xi}_{j}\right\|, d=2^{k}=\operatorname{det} M$. Then $k \leq 2 n \log _{2} C$
\square Encoding ratio related to "experimental hardness"
Resource savings from lattice basis reduction
Ex: L=3 surface code

$\hat{q}_{j} \bmod 2 \pi$
$\hat{p}_{j} \bmod 2 \pi$
$3 n-1=26$ stab.

- $\hat{S}_{L, j}^{X}=\sum_{l} a_{j l} \hat{x}_{l} \bmod 2 \pi$
- $\hat{S}_{L, j}^{Z}=\sum_{l}^{l} b_{j l} \hat{x}_{l} \bmod 2 \pi$

$$
M_{\mathrm{conc}}=\binom{M_{\mathrm{GKP}}}{M_{\mathrm{Q}}}
$$

can do respecting weights, geometric locality!

Symplectic operations

$$
U_{S}=\exp \left(-i \hat{\boldsymbol{x}}^{T} H \hat{\boldsymbol{x}}\right)
$$

Symplectic operations

$$
\begin{aligned}
& U_{S}=\exp \left(-i \hat{\boldsymbol{x}}^{T} H \hat{\boldsymbol{x}}\right) \\
& U_{S} \hat{\boldsymbol{x}} U_{S}^{\dagger}=S \hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2 n), \quad S J S^{T}=J
\end{aligned}
$$

Symplectic operations

$$
\begin{aligned}
& U_{S}=\exp \left(-i \hat{\boldsymbol{x}}^{T} H \hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger} \mathcal{S} U_{S} \Leftrightarrow M \mapsto M S^{T}, \quad M^{\perp} \mapsto M^{\perp} S^{T} \\
& U_{S} \hat{\boldsymbol{x}} U_{S}^{\dagger}=S \hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2 n), \quad S J S^{T}=J
\end{aligned}
$$

Symplectic operations

$$
\begin{aligned}
& U_{S}=\exp \left(-i \hat{\boldsymbol{x}}^{T} H \hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger} \mathcal{S} U_{S} \Leftrightarrow M \mapsto M S^{T}, \quad M^{\perp} \mapsto M^{\perp} S^{T} \\
& U_{S} \hat{\boldsymbol{x}} U_{S}^{\dagger}=S \hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2 n), \quad S J S^{T}=J
\end{aligned}
$$

Theorem (symplectically equivalent codes):
Given $\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M=N S^{T}$ iff $M J M^{T}=N J N^{T}$ (in canonical form)

$$
A_{M, N}=\left(\begin{array}{cc}
0 & D \\
-D & 0
\end{array}\right)
$$

Symplectic operations

$$
\begin{aligned}
& U_{S}=\exp \left(-i \hat{\boldsymbol{x}}^{T} H \hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger} \mathcal{S} U_{S} \Leftrightarrow M \mapsto M S^{T}, \quad M^{\perp} \mapsto M^{\perp} S^{T} \\
& U_{S} \hat{\boldsymbol{x}} U_{S}^{\dagger}=S \hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2 n), \quad S J S^{T}=J
\end{aligned}
$$

Theorem (symplectically equivalent codes):

Given $\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M=N S^{T}$ iff $M J M^{T}=N J N^{T}$ (in canonical form)

Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)

$$
A_{M, N}=\left(\begin{array}{cc}
0 & D \\
-D & 0
\end{array}\right)
$$

Symplectic operations

$U_{S}=\exp \left(-i \hat{\boldsymbol{x}}^{T} H \hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger} \mathcal{S} U_{S} \Leftrightarrow M \mapsto M S^{T}, \quad M^{\perp} \mapsto M^{\perp} S^{T}$
$U_{S} \hat{\boldsymbol{x}} U_{S}^{\dagger}=S \hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2 n), \quad S J S^{T}=J$

Theorem (symplectically equivalent codes):

Given $\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M=N S^{T}$ iff $M J M^{T}=N J N^{T}$ (in canonical form)
Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)

$$
A_{M, N}=\left(\begin{array}{cc}
0 & D \\
-D & 0
\end{array}\right)
$$

Corollary :

Any code with $d=2$ is s.e. to $\mathcal{S}_{\square}^{(2)}=\left\langle e^{i 2 \sqrt{\pi} \hat{q}_{1}}, e^{-i 2 \sqrt{\pi} \hat{p}_{1}}, e^{i \sqrt{\pi} \hat{q}_{j}}, e^{i \sqrt{\pi} \hat{p}_{j}}\right\rangle, j>1$

Symplectic operations

$U_{S}=\exp \left(-i \hat{\boldsymbol{x}}^{T} H \hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger} \mathcal{S} U_{S} \Leftrightarrow M \mapsto M S^{T}, \quad M^{\perp} \mapsto M^{\perp} S^{T}$
$U_{S} \hat{\boldsymbol{x}} U_{S}^{\dagger}=S \hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2 n), \quad S J S^{T}=J$

Theorem (symplectically equivalent codes):

Given $\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M=N S^{T}$ iff $M J M^{T}=N J N^{T}$ (in canonical form)
Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)

$$
A_{M, N}=\left(\begin{array}{cc}
0 & D \\
-D & 0
\end{array}\right)
$$

Corollary :

Any code with $d=2$ is s.e. to $\mathcal{S}_{\square}^{(2)}=\left\langle e^{i 2 \sqrt{\pi} \hat{q}_{1}}, e^{-i 2 \sqrt{\pi} \hat{p}_{1}}, e^{i \sqrt{\pi} \hat{q}_{j}}, e^{i \sqrt{\pi} \hat{p}_{j}}\right\rangle, j>1$
one qubit encoded in mode 1, no qubit on other modes

Symplectic operations

$$
\begin{aligned}
& U_{S}=\exp \left(-i \hat{\boldsymbol{x}}^{T} H \hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger} \mathcal{S} U_{S} \Leftrightarrow M \mapsto M S^{T}, \quad M^{\perp} \mapsto M^{\perp} S^{T} \\
& U_{S} \hat{\boldsymbol{x}} U_{S}^{\dagger}=S \hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2 n), \quad S J S^{T}=J
\end{aligned}
$$

Theorem (symplectically equivalent codes):

Given $\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M=N S^{T}$ iff $M J M^{T}=N J N^{T}$ (in canonical form)

Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)
$A_{M, N}=\left(\begin{array}{cc}0 & D \\ -D & 0\end{array}\right)$

Corollary :

Any code with $d=2$ is s.e. to $\mathcal{S}_{\square}^{(2)}=\left\langle e^{i 2 \sqrt{\pi} \hat{q}_{1}}, e^{-i 2 \sqrt{\pi} \hat{p}_{1}}, e^{i \sqrt{\pi} \hat{q}_{j}}, e^{i \sqrt{\pi} \hat{p}_{j}}\right\rangle, j>1$
one qubit encoded in mode 1, no qubit on other modes
Generalizes to higher logical dimensions $M_{\square} J M_{\square}^{T}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \otimes \operatorname{diag}\left\{d_{1}, \ldots, d_{n}\right\}$

Distance of GKP codes

Distance of GKP codes

Hp : small shifts are more likely

Distance of GKP codes

Hp: small shifts are more likely

$$
\mathcal{N}(\rho) \propto \int d^{2 n} \boldsymbol{x} e^{-\frac{\|\boldsymbol{x}\|}{\sigma^{2}}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})
$$

Distance of GKP codes

Hp: small shifts are more likely $\quad \mathcal{N}(\rho) \propto \int d^{2 n} \boldsymbol{x} e^{-\frac{\|\boldsymbol{x}\|}{\sigma^{2}}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})$ Define: $\Delta=\Delta(\mathcal{L}):=\min _{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp} / \mathcal{L}}\|\boldsymbol{x}\|$

Distance of GKP codes

Hp: small shifts are more likely $\quad \mathcal{N}(\rho) \propto \int d^{2 n} \boldsymbol{x} e^{-\frac{\|\boldsymbol{x}\|}{\sigma^{2}}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})$
Define: $\Delta=\Delta(\mathcal{L}):=\min _{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp} / \mathcal{L}}\|\boldsymbol{x}\|$

For $\llbracket n, k, d \rrbracket$ qubit code concatenated with local GKP: $\Delta_{\mathrm{conc}} \geq d \Delta_{\mathrm{loc}}$

Distance of GKP codes

Hp: small shifts are more likely $\quad \mathcal{N}(\rho) \propto \int d^{2 n} \boldsymbol{x} e^{-\frac{\|\boldsymbol{x}\|}{\sigma^{2}}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})$
Define: $\Delta=\Delta(\mathcal{L}):=\min _{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp} / \mathcal{L}}\|\boldsymbol{x}\|$

For $\llbracket n, k, d \rrbracket$ qubit code concatenated with local GKP: $\Delta_{\text {conc }} \geq d \Delta_{\text {loc }}$
From transference theorems we have the following Theorem (distance bound I):

Distance of GKP codes

Hp: small shifts are more likely $\quad \mathcal{N}(\rho) \propto \int d^{2 n} \boldsymbol{x} e^{-\frac{\|\boldsymbol{x}\|}{\sigma^{2}}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})$
Define: $\Delta=\Delta(\mathcal{L}):=\min _{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp} / \mathcal{L}}\|\boldsymbol{x}\|$

For $\llbracket n, k, d \rrbracket$ qubit code concatenated with local GKP: $\Delta_{\text {conc }} \geq d \Delta_{\text {loc }}$
From transference theorems we have the following Theorem (distance bound I):
For a code with lattice $\mathcal{L}: \Delta \geq \lambda_{1}\left(\mathcal{L}^{\perp}\right) \geq \lambda_{2 n}^{-1}(\mathcal{L}) \geq C^{-1}$ and $\Delta \leq \lambda_{2 n}\left(\mathcal{L}^{\perp}\right) \leq \frac{2 n}{\lambda_{1}(\mathcal{L})}$

Distance of GKP codes

Hp: small shifts are more likely $\quad \mathcal{N}(\rho) \propto \int d^{2 n} \boldsymbol{x} e^{-\frac{\|\boldsymbol{x}\|}{\sigma^{2}}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})$
Define: $\Delta=\Delta(\mathcal{L}):=\min _{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp} / \mathcal{L}}\|\boldsymbol{x}\|$

$$
C=\max _{j}\left\|\boldsymbol{\xi}_{j}\right\|
$$

For $\llbracket n, k, d \rrbracket$ qubit code concatenated with local GKP: $\Delta_{\mathrm{conc}} \geq d \Delta_{\mathrm{loc}}$
From transference theorems we have the following Theorem (distance bound I):
For a code with lattice $\mathcal{L}: \Delta \geq \lambda_{1}\left(\mathcal{L}^{\perp}\right) \geq \lambda_{2 n}^{-1}(\mathcal{L}) \geq C^{-1}$ and $\Delta \leq \lambda_{2 n}\left(\mathcal{L}^{\perp}\right) \leq \frac{2 n}{\lambda_{1}(\mathcal{L})}$

Distance of GKP codes

Hp: small shifts are more likely $\quad \mathcal{N}(\rho) \propto \int d^{2 n} \boldsymbol{x} e^{-\frac{\|\boldsymbol{x}\|}{\sigma^{2}}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})$
Define: $\Delta=\Delta(\mathcal{L}):=\min _{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp} / \mathcal{L}}\|\boldsymbol{x}\|$

$$
C=\max _{j}\left\|\boldsymbol{\xi}_{j}\right\|
$$

For $\llbracket n, k, d \rrbracket$ qubit code concatenated with local GKP: $\Delta_{\mathrm{conc}} \geq d \Delta_{\mathrm{loc}}$
From transference theorems we have the following Theorem (distance bound I):
For a code with lattice $\mathcal{L}: \Delta \geq \lambda_{1}\left(\mathcal{L}^{\perp}\right) \geq \lambda_{2 n}^{-1}(\mathcal{L}) \geq C^{-1}$ and $\Delta \leq \lambda_{2 n}\left(\mathcal{L}^{\perp}\right) \leq \frac{2 n}{\lambda_{1}(\mathcal{L})}$ with $\lambda_{j}(\mathcal{L})=\min _{\mathbb{R}^{+}}\{r \mid \mathcal{L}$ contains j l.i. vectors with $\|\boldsymbol{x}\| \leq r\} \quad$ (successive minima)

Distance of GKP codes

Hp: small shifts are more likely

$$
\mathcal{N}(\rho) \propto \int d^{2 n} \boldsymbol{x} e^{-\frac{\|\boldsymbol{x}\|}{\sigma^{2}}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})
$$

Define: $\Delta=\Delta(\mathcal{L}):=\min _{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp} / \mathcal{L}}\|\boldsymbol{x}\|$

$$
C=\max _{j}\left\|\boldsymbol{\xi}_{j}\right\|
$$

For $\llbracket n, k, d \rrbracket$ qubit code concatenated with local GKP: $\Delta_{\text {conc }} \geq d \Delta_{\text {loc }}$
From transference theorems we have the following Theorem (distance bound I):
For a code with lattice $\mathcal{L}: \Delta \geq \lambda_{1}\left(\mathcal{L}^{\perp}\right) \geq \lambda_{2 n}^{-1}(\mathcal{L}) \geq C^{-1}$ and $\Delta \leq \lambda_{2 n}\left(\mathcal{L}^{\perp}\right) \leq \frac{2 n}{\lambda_{1}(\mathcal{L})}$

$$
\text { with } \lambda_{j}(\mathcal{L})=\min _{\mathbb{R}^{+}}\{r \mid \mathcal{L} \text { contains } j \text { l.i. vectors with }\|\boldsymbol{x}\| \leq r\} \quad \text { (successive minima) }
$$

From symplectic equivalence we have the following Theorem (distance bound II):
For a code with lattice $\mathcal{L}(M) \mid M=M_{\square} S^{T}, M J M^{T}=\left(\begin{array}{cc}0 & D \\ -D & 0\end{array}\right)$ it holds $\Delta \leq \sqrt{\max _{j} D_{j, j}}{ }^{-1}$ sq (S)

Distance of GKP codes

Hp: small shifts are more likely

$$
\mathcal{N}(\rho) \propto \int d^{2 n} \boldsymbol{x} e^{-\frac{\|\boldsymbol{x}\|}{\sigma^{2}}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})
$$

Define: $\Delta=\Delta(\mathcal{L}):=\min _{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp} / \mathcal{L}}\|\boldsymbol{x}\|$

$$
C=\max _{j}\left\|\boldsymbol{\xi}_{j}\right\|
$$

For $\llbracket n, k, d \rrbracket$ qubit code concatenated with local GKP: $\Delta_{\text {conc }} \geq d \Delta_{\text {loc }}$
From transference theorems we have the following Theorem (distance bound I):
For a code with lattice $\mathcal{L}: \Delta \geq \lambda_{1}\left(\mathcal{L}^{\perp}\right) \geq \lambda_{2 n}^{-1}(\mathcal{L}) \geq C^{-1}$ and $\Delta \leq \lambda_{2 n}\left(\mathcal{L}^{\perp}\right) \leq \frac{2 n}{\lambda_{1}(\mathcal{L})}$

$$
\text { with } \lambda_{j}(\mathcal{L})=\min _{\mathbb{R}^{+}}\{r \mid \mathcal{L} \text { contains } j \text { l.i. vectors with }\|\boldsymbol{x}\| \leq r\} \quad \text { (successive minima) }
$$

From symplectic equivalence we have the following Theorem (distance bound II):
For a code with lattice $\mathcal{L}(M) \mid M=M_{\square} S^{T}, M J M^{T}=\left(\begin{array}{cc}0 & D \\ -D & 0\end{array}\right)$ it holds $\Delta \leq \sqrt{\max _{j} D_{j, j}}{ }^{-1}$ sq (S)

Conclusions

Summary

- Introduced bosonic codes and lattices
- Lattice bases: link to experimental hardness, resource savings
- Symplectically equivalent codes
- Distance of a GKP code, upper- and lower- bounds from lattice properties

Summary

- Introduced bosonic codes and lattices
- Lattice bases: link to experimental hardness, resource savings
- Symplectically equivalent codes
- Distance of a GKP code, upper- and lower- bounds from lattice properties

Further results

- Distance completely specified by lattice distance distribution
- Decoding formulated purely in terms of lattice quantities (theta functions)
- New codes (lattice tensor product, glued lattices)

Summary

- Introduced bosonic codes and lattices
- Lattice bases: link to experimental hardness, resource savings
- Symplectically equivalent codes
- Distance of a GKP code, upper- and lower- bounds from lattice properties

Further results

- Distance completely specified by lattice distance distribution
- Decoding formulated purely in terms of lattice quantities (theta functions)
- New codes (lattice tensor product, glued lattices)

Future perspectives

- Better codes from classical lattice codes? (LDLC...)
- Lattice-based numerical techniques for practical decoding?

Summary

- Introduced bosonic codes and lattices
- Lattice bases: link to experimental hardness, resource savings
- Symplectically equivalent codes
- Distance of a GKP code, upper- and lower- bounds from lattice properties

Further results

- Distance completely specified by lattice distance distribution
- Decoding formulated purely in terms of lattice quantities (theta functions)
- New codes (lattice tensor product, glued lattices)

Future perspectives

- Better codes from classical lattice codes? (LDLC...)
- Lattice-based numerical techniques for practical decoding?

