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● Good against common noise

● Logical Clifford = Gaussian operations (“easy” - good for EC & QIP)

● Can be used as effective qubits and combined with stabilizer codes

● Can protect CV systems (idea: error mitigation for Boson Sampling)

● Logical states thought hard to realize, now there are experiments!
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1. Lattice formalism
2. Code properties from lattice bases
3. Symplectic operations
4. Distance bounds for GKP codes
5. Decoding problem and Θ  functions
6. GKP codes beyond concatenation

Outline
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Ex: L=3 surface code
3n - 1 = 26 stab.

lattice basis reduction

2n = 18 stab. gens.

can do respecting weights, geometric locality!

Lattice bases

Exploit basis manipulations/properties to study codes 

Theorem (Hadamard’s bound):

Encoding ratio related to “experimental hardness”

Resource savings from lattice basis reduction
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Theorem (symplectically equivalent codes):

Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)

Corollary :

one qubit encoded in mode 1, no qubit on other modes

Generalizes to higher logical dimensions
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Hp: small shifts are more likely

Define:

For   qubit code concatenated with local GKP:

From transference theorems we have the following Theorem (distance bound I):

From symplectic equivalence we have the following Theorem (distance bound II):

(successive minima)with

Measure of “squeezing”
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Further results

Future perspectives
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Paper coming soon!Thank you!
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