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1. Optimization of networks for MBQC, PRA 91, 032314 (2015)
2. Direct approach to Gaussian MBQC, PRA 94, 062332 (2016)
3. Multimode entanglement in reconfigurable graph states using 

optical frequency combs, NatComm 8, 15645 (2017)

4. Polynomial approximation of non-Gaussian unitaries by 
counting one photon at a time, PRA 95 (5), 052352 (2017)

5. Violating Bell inequalities with entangled optical frequency combs and multipixel homodyne detection, 
PRA 98, 062101 (2018)

6. High-dimensional quantum encoding via photon-subtracted squeezed states, PRA A 99, 022342 (2019)
 

7. Versatile engineering of multimode squeezed states by optimizing the pump spectral profile in spontaneous 
parametric down-conversion, PRA 97, 033808 (2018)

8. Reconfigurable optical implementation of quantum complex networks, NJP 20, 053024 (2018) 
9. Bloch-Messiah reduction for twin beams of light, PRA 100, 013837 (2019)

 
10.Random coding for sharing bosonic quantum secrets, PRA 100, 022303 (2019) 
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Effective quadratic
Hamiltonian:

Our contribution:
 
Combining pump-shape and detection 
system optimization it is possible to realize 
QIP including
 
●Measurement-based Q comp.
●Simulation of complex networks (Turku)
●Secret sharing (more later) 28
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Non-Gaussianity from single-photon detection
Effective transformation

Input state

Displaced 
squeezed state

Single-photon projection

DisplacementStrategy:
1.Entangle input to a Gaussian state
2.Detect a single photon (probabilistic)
3.Perform correction
4.Repeat

Monomial in q

EnvelopeNormalization

Motivation:
1.No Q Advantage without non-Gaussian
2.Realizable non-Gauss: single photon ops

Our contribution:
 
Single-photon non-unitary operations can be 
used to approximate non-Gaussian unitary evolution
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CV quantum state sharing: random codes

QQ: The secret is a quantum state
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How it started: NatComm 8, 15645 (2017)
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How it started: NatComm 8, 15645 (2017)

How it continued: PRA 100, 022303 (2019) 
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Our contribution:
 
A CV-QSS scheme can be realized by 
mixing the secret (quantum) state with 
squeezed states in almost any passive 
interferometer

✔Generalizes previous protocols
✔Experimentally friendly
✔Analogous to erasure correcting 

code

CV quantum state sharing: random codes
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How it started: NatComm 8, 15645 (2017)

How it continued: PRA 100, 022303 (2019) 
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Current projects
(to appear soon)

With

Jens Eisert Jonathan Conrad
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(Quantum) Error correction and harmonic oscillators

In phase space:
Wigner Function

Quasi-probability distribution

EM field mode, LC circuit, ...

Infinitely many symbols! 
How to restrict to finite?

Information is always encoded in phys. syst.
Always subject to noise

Rich theory of error correction to recover 
noisy messages:

Embed information in larger system

Quantum: mostly qubits

Symmetries! 48
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Encoding qubits on a lattice

Code: 

→ Logical operations: dual

p

q

● Good protection against common noise processes

● Logical Clifford = Gaussian operations (“easy” - good for EC & QIP)

● Can be used as effective qubits and combined with stabilizer codes

● Can protect CV systems (idea: error mitigation for Boson Sampling)

● Logical states thought hard to realize, now there are experiments!

Grid codes: stabilized by (commuting) displacement operators → underlying lattice

“Logical subspace”: finite photon number, odd/even photon number, or...translation symmetries!

Gottesman, Kitaev, Preskill PRA 64 (2001)

Logical states “live” on 

Flühmann et al, Nature 566 (2019) Campagne-Ibarcq et al, Nature 584 (2020)

→ Lattice of translations

(!)

Albert et al, PRA 97 (2018)

Vuillot et al, PRA 99 (2019) Bourassa et al, Quantum 5 (2021)Noh&Chamberland PRA 101 (2020)

p

q

Noh et al, PRL 125 (2020)
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Grid states are somewhat resistant to noise, but still need to add redundancy

Leveraging the lattice point of view
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Leveraging the lattice point of view

●Rich theory of lattices
●Advantages:

●Better resource use 
●New codes
●Additional proof techniques
●Better decoding techniques?

Up to now: concatenation → add “qubit level symmetries” over many grid-encoded oscillators
Up to now: concatenation → “lattice picture” only used for individual oscillators

Q: Can lattice properties be exploited more?

Grid states are somewhat resistant to noise, but still need to add redundancy
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Noh&Chamberland PRA 101 (2020)

2n = 18 mode-wise stab.
+

n-1 = 8 qubit stab.
----------------------------------

Tot = 3n -1 = 26 stab.

Can achieve same 
code with 18 total 

stab.

Q: Can lattice properties be exploited more?

Grid states are somewhat resistant to noise, but still need to add redundancy

Oscillators

Single-mode lattice checks

Qubit-level checks

Example:

Up to now: concatenation → add “qubit level symmetries” over many grid-encoded oscillators
Up to now: concatenation → “lattice picture” only used for individual oscillators

Leveraging the lattice point of view

●Rich theory of lattices
●Advantages:

●Better resource use 
●New codes
●Additional proof techniques
●Better decoding techniques?
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