

Versatile engineering of multimode squeezed states by optimizing the pump spectral profile in spontaneous parametric down-conversion

Francesco Arzani, Claude Fabre, Nicolas Treps

Phys. Rev. A 97, 033808 (2018)

Motivation: CV cluster states

G. Patera et al, EPJD 56, 123-140 (2010)

Motivation: CV cluster states

G. Patera et al, EPJD 56, 123-140 (2010)

P. Van Loock, D. Markham, AIP Conf. Proc. 1363, 256 (2011)

Motivation: CV cluster states

G. Patera et al, EPJD 56, 123-140 (2010)

p

P. Van Loock, D. Markham, AIP Conf. Proc. 1363, 256 (2011)

$$\exp\left(i\sum_{i>j}V_{ij}\hat{q}_i\otimes\hat{q}_j\right)|0\rangle_p^{\otimes N}$$

- Can be represented as graphs
- Characterized by nullifier operators
- Approximated by Gaussian states

Producing Gaussian cluster states

Approximate cluster states with squeezing + mode basis change

1

Spontaneous parametric down-conversion of optical frequency combs

(And how to measure it)

Multimode squeezing: Parametric Interaction

Multimode squeezing: Parametric Interaction

Interaction Hamiltonian

$$H = i \sum_{m,q} \mathcal{L}_{m,q} \hat{a}^{\dagger}_{\omega_m} \hat{a}^{\dagger}_{\omega_q} + \text{h.c.}$$

Multimode squeezing: Parametric Interaction

2

Shaping the pump spectrum

F. Arzani, C. Fabre, N. Treps. Phys. Rev. A 97, 033808 (2018)

Pump Shaping: Experimental Setup

Interaction Hamiltonian

$$H = i \sum_{m,q} \mathcal{L}_{m,q} \hat{a}^{\dagger}_{\omega_m} \hat{a}^{\dagger}_{\omega_q} + \text{h.c.}$$

Pump Shaping: Experimental Setup

Tweaking the Squeezing

Complex relation between pump and squeezing/supermodes : Use **numerical optimization**:

Tweaking the Squeezing

Complex relation between pump and squeezing/supermodes : Use numerical optimization:

Maximize \mathcal{F}_1 : flatten squeezing spectrum Maximize \mathcal{F}_2 : introduce gap between 1st and 2nd squeezing $\left. \right\} + Penalty for unfeasible shapes$

Tweaking the Squeezing

Complex relation between pump and squeezing/supermodes : Use **numerical optimization**:

Maximize \mathcal{F}_1 : flatten squeezing spectrum Maximize \mathcal{F}_2 : introduce gap between 1st and 2nd squeezing

Adjust the squeezing spectrum : Study collective behavior of quantum oscillators

J. Nokkala et al, NJP 20, 053024 (2018)

Penalty for + unfeasible shapes

Optimal pump shapes

Optimizing CV Cluster States

Mean nullifiers' squeezing :

 $<\Delta \delta_i > = -0.18 \text{ dB}$

Optimizing CV Cluster States

$$\hat{\mathbf{L}}\hat{\delta}_1 = \hat{p}_A - \hat{q}_D$$

Mean nullifiers' squeezing :

$$<\Delta \delta_i > = -0.18 \text{ dB}$$

 $<\Delta \delta_i > = -2.31 \text{ dB}$ Fully inseparable

Optimizing CV Cluster States

Mean nullifiers' squeezing :

$$\left. \begin{array}{l} <\Delta \delta_i > = - \ 0.18 \ dB \\ <\Delta \delta_i > = - \ 2.31 \ dB \end{array} \right\} \begin{array}{l} \mbox{Fully} \mbox{inseparable} \end{array}$$

Nullifiers' squeezing

Optimal pump profiles

Summary

- SPOPOs can generate CV entangled states
- Spectrum of the pump has macroscopic effect
- Optimization effectively improves CV cluster states
- The method is versatile

Summary

- SPOPOs can generate CV entangled states
- Spectrum of the pump has macroscopic effect
- Optimization effectively improves CV cluster states
- The method is versatile

Giulia Ferrini

Valentina Parigi

Johannes Nokkala Sabrina Maniscalco

Jyrki Piilo