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Secret Sharing

A dealer shares a secret with several players in such a way that no 
single player is able to retrieve the information alone

● Access parties: Groups that can retrieve the secret
● Adversary structure: Groups that should not get information
● Threshold schemes: any k or more players are authorized
● Quantum Secret Sharing: secret encoded in a quantum state

(random)
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Several paradigms

CC: Classical information shared using classical resources

CQ: Classical information shared using quantum resources
→ Improved security

QQ: The secret is a quantum state
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● First proposal in DV (qubits)

● Cluster-state based protocols in DV

● Several proposals in CV...

● ...and experiments
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A.M. Lance et al, PRL 92   (2004)

H.-K. Lo & C. Weedbrook, PRA 88   (2013)

P. Van Loock & D. Markham, AIP Conf. Proc. 1363, 256,  (2011)

M. Hillery, V. Bužek & A. Berthiaume,  PRA 59  (1999)
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● Useful to design experiments
● Potentially applicable to share interesting/useful states
● Connections with black holes physics
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systems (typically d = 2)
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Discrete and Continuous variables

DV : information encoded in d-level 
systems (typically d = 2) 

CV : information encoded in observables with  
continuous spectrum, e.g. :     ,    

Examples

DV : spins CV : Harmonic oscillator
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Discrete and Continuous variables

DV : information encoded in d-level 
systems (typically d = 2) 

CV : information encoded in observables with  
continuous spectrum, e.g. :     ,    

In quantum optics

DV : polarization of single photon CV : quadratures of the field

Often simply    ,       in the following 
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Wigner function ~ Distribution in phase space

May be negative!

CV states can be visualized with a phase-space representation

(Also a useful mathematical tool!)

Vacuum → Same marginals Squeezing

Gaussian states:
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Squeezed states

Squeezing

Reduced fluctuations in q or p

In the limit, eigen-states of q or p
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Squeezed states

Squeezing

Workhorse of CV Quantum information:

● Easy to produce in the lab (non-linear optical media)
● Deterministic entanglement with passive linear optics
● Used for quantum teleportation
● Experimental production of CV cluster states

Reduced fluctuations in q or p

In the limit, eigen-states of q or p
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● Can be represented as graphs
● Characterized by nullifier operators
● Approximated by Gaussian states

Cluster states
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Passive
interferometer

Passive
interferometerVacuumVacuum

Multimode
squeezing
Multimode
squeezing

 

Multimode 
pure Gaussian
quantum state

S. Braunstein,
PRA 71, 055801 (2005)

Producing Gaussian cluster states

These operations are deterministic!

For pure Gaussian states 
(Quantum Optics):

Finite Sqz → Non-zero Q fluctuations → Logical errors

(No post-selection)



(CV) Quantum secret sharing

FA,  G. Ferrini, F. Grosshans, D. Markham, arXiv:1808.06870
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A quantum (3,5) scheme with Cluster States

CV Bell Measurement

P. Van Loock & D. Markham, AIP Conf. Proc. 1363, 256,  (2011)

Start Teleportation Secret is encoded

^

^
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A quantum (3,5) scheme with Cluster States

Logical operators

CV Bell Measurement

P. Van Loock & D. Markham, AIP Conf. Proc. 1363, 256,  (2011)

Start Teleportation Secret is encoded

^

^

● Same statistics on encoded state 
as q, p on secret state

● Can be measured locally by any 
access party



29

“Theory inspired” experiment

The protocol was simulated:
modes are not really separated, only gives an estimate of the excess noise

Squeezed states: supermodes

Linear optics →  Change of mode basis 
  (Linear combinations of supermodes) 

Red: experiment, 4 dB
Blue: theory, 4 dB

Purple: experiment, 3 dB
Green: theory, 3 dB Fidelity above 

classical bound

Y. Cai et al, Nat. Comm. 8, 15645 (2017)
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A general CV threshold scheme
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Derived conditions on the interferometer  such 
that each access party can either: 

A general scheme

● Measure secret quadratures

● Physically reconstruct the secret
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Derived conditions on the interferometer  such 
that each access party can either: 

A general scheme

● Measure secret quadratures

● Physically reconstruct the secret

Almost all passive interferometers can be used for 
Quantum Secret Sharing with squeezed states

(In the sense of Haar measure)
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Idea of the proof
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Gaussian transformations and Symplectic matrices

Standard symplectic form
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Gaussian transformations and Symplectic matrices

Standard symplectic form

Unitary Gaussian transformations Symplectic Group

Phase-space 
deformation

Phase-space 
translation
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Gaussian transformations and Symplectic matrices

Standard symplectic form

Unitary Gaussian transformations Symplectic Group

Squeezing:

Linear optics (passive interferometers):

Phase-space 
deformation

Phase-space 
translation
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The scheme revisited
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Decoding conditions

Each player has 2:
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Decoding conditions
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Decoding conditions
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Decoding conditions

Each player has 2:

Goal: Get rid of these, solve for these

noise

Solving linear systems → Submatrices of SL must be non-singular
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Decoding conditions and the Haar measure

To eliminate the first anti-squeezed q

For (all) A to retrieve the secret
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Decoding conditions and the Haar measure

To eliminate the first anti-squeezed q

For (all) A to retrieve the secret

Haar measure = uniform probability measure on U(n)

Coefficient of unitary matrices = real analytic functions of “angles”

“= 0” in corresponds to null set of 

real analytic functions →  zero measure 

→  corresponding matrices  
have zero Haar measure

B. Mityagin,
 arXiv:1512.07276 (2015)
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Decoding conditions and the Haar measure

To eliminate the first anti-squeezed q

For (all) A to retrieve the secret

Haar measure = uniform probability measure on U(n)

Coefficient of unitary matrices = real analytic functions of “angles”

“= 0” in corresponds to null set of 

real analytic functions →  zero measure 

→  corresponding matrices  
have zero Haar measure

If : A can sample 

Or construct a unitary Gaussian decoding

B. Mityagin,
 arXiv:1512.07276 (2015)
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Conclusions & Outlook

● A general scheme with Gaussian resources
       Works for almost any interferometer
 

● Decoding only requires unitary Gaussian transformations
 

● Decoding can be computed efficiently for any A
(May still be hard to compute for all A)

 
● Decoding: only two squeezers / one sqz + HDD / Local HDD

 
● Easy to show that fidelity        1 for infinite squeezing

 
● Easy to generalize to multi-mode secrets
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Conclusions & Outlook

● A general scheme with Gaussian resources
       Works for almost any interferometer
 

● Decoding only requires unitary Gaussian transformations
 

● Decoding can be computed efficiently for any A
(May still be hard to compute for all A)

 
● Decoding: only two squeezers / one sqz + HDD / Local HDD

 
● Easy to show that fidelity        1 for infinite squeezing

 
● Easy to generalize to multi-mode secrets

● Capacity? (Classical, quantum, private)
● Robust to losses?
● Optimize interferometer?
● Experiments?

TODO:



Thank you!



Thank you!
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Gaussian transformations and Symplectic matrices

Standard symplectic form

Unitary Gaussian transformations Symplectic Group

Squeezing:

Linear optics (passive interferometers):

Bloch-Messiah:

Gaussian CPTP:
(Stinespring)

Gaussian unitary with 
Gaussian ancillae

+
Partial trace

Phase-space 
deformation

Phase-space 
translation
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Encoding procedure

After measurement:

Each player has 2:

Goal: Get rid of these!

Each player eliminates one

noise
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Encoding procedure

After measurement:

Set of k players A (access party)

Each player has 2:

Goal: Get rid of these!

Each player eliminates one

2k

2k- 2 Correct

noise

We are done if
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Fidelity vs Squeezing (secret = coherent state)

For 1000 randomly generated interferometers

~5 sec~1 sec ~22 sec

35 APs10 APs3 APs

# APs = 
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