Gottesman-Kitaev-Preskill bosonic error correcting codes: a lattice perspective

arXiv:2109.14645

Jonathan Conrad, Jens Eisert, Francesco Arzani

1

Information always encoded in phys. syst.

Information always encoded in phys. syst.

Error correction: redundancy

Information always encoded in phys. syst.

Error correction: redundancy

Information always encoded in phys. syst.

Error correction: redundancy

Quantum: mostly qubits $\alpha \left| 0 \right\rangle + \beta \left| 1 \right\rangle$

Information always encoded in phys. syst.

Error correction: redundancy

Quantum: *mostly* qubits $\alpha |0\rangle + \beta |1\rangle$ **Bosonic codes**: *oscillators*

EM field mode, LC circuit, ...

Information always encoded in phys. syst.

Error correction: redundancy

Quantum: *mostly* qubits $\alpha |0\rangle + \beta |1\rangle$ **Bosonic codes**: <u>oscillators</u>

ΕM

$$\hat{\boldsymbol{x}} = (q_1, \dots, q_n, p_1, \dots, p_n)^T$$

$$[\hat{\boldsymbol{x}}_j, \hat{\boldsymbol{x}}_k] = iJ_{jk}$$
field mode, LC circuit, ...
$$\hat{\boldsymbol{x}} = \begin{pmatrix} \mathbf{0} & \mathbb{I} \\ -\mathbb{I} & \mathbf{0} \end{pmatrix}$$

Information always encoded in phys. syst.

Error correction: redundancy

Quantum: mostly qubits $\alpha |0\rangle + \beta |1\rangle$ **Bosonic codes**: <u>oscillators</u>

$$\hat{\boldsymbol{x}} = (q_1, \dots, q_n, p_1, \dots, p_n)^T$$

$$\begin{bmatrix} \hat{\boldsymbol{x}}_j, \hat{\boldsymbol{x}}_k \end{bmatrix} = iJ_{jk}$$

$$J = \begin{pmatrix} \mathbf{0} & \mathbb{I} \\ -\mathbb{I} & \mathbf{0} \end{pmatrix}$$

Phase space:

$$W_{\rho}(\boldsymbol{q},\boldsymbol{p}) = (2\pi)^{-2n} \int \mathrm{d}^{n}\boldsymbol{y} \left\langle \boldsymbol{q} - \frac{\boldsymbol{y}}{2} \right| \hat{\rho} \left| \boldsymbol{q} + \frac{\boldsymbol{y}}{2} \right\rangle e^{i\boldsymbol{p}\cdot\boldsymbol{y}}$$

$$(\boldsymbol{q},\boldsymbol{p}) = (2\pi)^{-2n} \int \mathrm{d}^{n}\boldsymbol{y} \left\langle \boldsymbol{q} - \frac{\boldsymbol{y}}{2} \right| \hat{\rho} \left| \boldsymbol{q} + \frac{\boldsymbol{y}}{2} \right\rangle$$

Information always encoded in phys. syst. Always subject to noise

Error correction: redundancy

Quantum: *mostly* qubits $\alpha |0\rangle + \beta |1\rangle$ **Bosonic codes**: <u>oscillators</u>

0000)

$$\hat{x} = (q_1, \dots, q_n, p_1, \dots, p_n)$$

$$\hat{x} = (x_j, \hat{x}_k] = iJ_{jk}$$

$$I = \begin{pmatrix} \mathbf{0} & \mathbb{I} \\ -\mathbb{I} & \mathbf{0} \end{pmatrix}$$
EM field mode, LC circuit, ...

Phase space:

$$W_{\rho}(\boldsymbol{q},\boldsymbol{p}) = (2\pi)^{-2n} \int d^{n}\boldsymbol{y} \left\langle \boldsymbol{q} - \frac{\boldsymbol{y}}{2} \right| \hat{\rho} \left| \boldsymbol{q} + \frac{\boldsymbol{y}}{2} \right\rangle e^{i\boldsymbol{p}\cdot\boldsymbol{y}}$$

$$p_{q} \qquad p_{q} \qquad p_{q}$$

Information always encoded in phys. syst. Always subject to noise

Error correction: redundancy

Quantum: *mostly* qubits $\alpha |0\rangle + \beta |1\rangle$ **Bosonic codes**: <u>oscillators</u>

(0000

$$\hat{x} = (q_1, \dots, q_n, p_1, \dots, p_r)$$

$$\hat{x} = (\hat{x}_j, \hat{x}_k] = iJ_{jk}$$

$$I = \begin{pmatrix} \mathbf{0} & \mathbb{I} \\ -\mathbb{I} & \mathbf{0} \end{pmatrix}$$
EM field mode, LC circuit, ...

Phase space:

$$W_{\rho}(\boldsymbol{q},\boldsymbol{p}) = (2\pi)^{-2n} \int d^{n}\boldsymbol{y} \left\langle \boldsymbol{q} - \frac{\boldsymbol{y}}{2} \right| \hat{\rho} \left| \boldsymbol{q} + \frac{\boldsymbol{y}}{2} \right\rangle e^{i\boldsymbol{p}\cdot\boldsymbol{y}}$$
Displacements:

$$D^{\dagger}(\boldsymbol{\xi}) \hat{\boldsymbol{x}} D(\boldsymbol{\xi}) = \hat{\boldsymbol{x}} + \sqrt{2\pi} \boldsymbol{\xi}$$

$$D^{\dagger}(\boldsymbol{\xi}) D(\boldsymbol{\xi}) = e^{-i2\pi \boldsymbol{\xi}^{T} J \boldsymbol{\eta}} D(\boldsymbol{\eta}) D(\boldsymbol{\xi})$$

11

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries!

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! <u>Grid codes</u>: stabilized by (commuting) displacement operators \rightarrow underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001)

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! <u>Grid codes</u>: stabilized by (commuting) displacement operators \rightarrow underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001)

$$\mathcal{S}=\langle D\left(m{\xi}_{1}
ight),\ldots,D\left(m{\xi}_{2n}
ight)
angle$$
 Code: $D\left(m{\xi}_{j}
ight)\left|\psi
ight
angle=\left|\psi
ight
angle$

 $\boldsymbol{\xi}_{j}^{T}J\boldsymbol{\xi}_{k}\in\mathbb{Z}$

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! <u>Grid codes</u>: stabilized by (commuting) displacement operators \rightarrow underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001)

$$\mathcal{S} = \langle D\left(\boldsymbol{\xi}_{1}
ight), \dots, D\left(\boldsymbol{\xi}_{2n}
ight)
angle$$
 Code: $D\left(\boldsymbol{\xi}_{j}
ight) |\psi
angle = |\psi
angle$ $\boldsymbol{\xi}_{j}^{T} J \boldsymbol{\xi}_{k} \in \mathbb{Z}$

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! <u>Grid codes</u>: stabilized by (commuting) displacement operators \rightarrow underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001)

$$\mathcal{S} = \langle D\left(oldsymbol{\xi}_{1}
ight), \dots, D\left(oldsymbol{\xi}_{2n}
ight)
angle$$
 Code: $D\left(oldsymbol{\xi}_{j}
ight) |\psi
angle = |\psi
angle$ $oldsymbol{\xi}_{j}^{T} J oldsymbol{\xi}_{k} \in \mathbb{Z}$

→ Lattice of translations
$$\mathcal{L}$$

→ Logical operations: dual \mathcal{L}^{\perp}

$$S_q = e^{i2\sqrt{\pi}\hat{q}} \quad S_p = e^{-i2\sqrt{\pi}\hat{p}}$$

р

q

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! <u>Grid codes</u>: stabilized by (commuting) displacement operators \rightarrow underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001)

$$\mathcal{S} = \langle D\left(oldsymbol{\xi}_{1}
ight), \dots, D\left(oldsymbol{\xi}_{2n}
ight)
angle$$
 Code: $D\left(oldsymbol{\xi}_{j}
ight) |\psi
angle = |\psi
angle$ $oldsymbol{\xi}_{i}^{T} J oldsymbol{\xi}_{k} \in \mathbb{Z}$

$$S_q = e^{i2\sqrt{\pi}\hat{q}} \qquad S_p = e^{-i2\sqrt{\pi}\hat{p}}$$

$$p$$

$$q$$

$$\frac{q}{2\sqrt{\pi}} \qquad 4\sqrt{\pi}$$

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! <u>Grid codes</u>: stabilized by (commuting) displacement operators \rightarrow underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001)

$$\mathcal{S}=\langle D\left(oldsymbol{\xi}_{1}
ight),\ldots,D\left(oldsymbol{\xi}_{2n}
ight)
ight)$$
 Code: $D\left(oldsymbol{\xi}_{j}
ight)|\psi
angle=|\psi
angle$ $_{oldsymbol{\xi}_{i}^{T}Joldsymbol{\xi}_{k}\in\mathbb{Z}}$

$$S_q = e^{i2\sqrt{\pi}\hat{q}} \quad S_p = e^{-i2\sqrt{\pi}\hat{p}}$$

$$p$$

$$q \quad q$$

$$2\sqrt{\pi} \quad 4\sqrt{\pi}$$

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! <u>Grid codes</u>: stabilized by (commuting) displacement operators \rightarrow underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001)

$$\mathcal{S} = \langle D\left(oldsymbol{\xi}_{1}
ight), \dots, D\left(oldsymbol{\xi}_{2n}
ight)
angle$$
 Code: $D\left(oldsymbol{\xi}_{j}
ight) |\psi
angle = |\psi
angle$ $oldsymbol{\xi}_{i}^{T} J oldsymbol{\xi}_{k} \in \mathbb{Z}$

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! <u>Grid codes</u>: stabilized by (commuting) displacement operators \rightarrow underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001)

$$\mathcal{S} = \langle D\left(\boldsymbol{\xi}_{1}\right), \dots, D\left(\boldsymbol{\xi}_{2n}\right) \rangle \Longrightarrow \text{Code: } D\left(\boldsymbol{\xi}_{j}\right) \left|\psi\right\rangle = \left|\psi\right\rangle$$

$$\boldsymbol{\xi}_{1}^{T} I \boldsymbol{\xi}_{1} \in \mathbb{Z}$$

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! <u>Grid codes</u>: stabilized by (commuting) displacement operators \rightarrow underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001)

$$\mathcal{S} = \langle D\left(oldsymbol{\xi}_{1}
ight), \dots, D\left(oldsymbol{\xi}_{2n}
ight)
angle$$
 Code: $D\left(oldsymbol{\xi}_{j}
ight) |\psi
angle = |\psi
angle$ $oldsymbol{\xi}_{j}^{T} J oldsymbol{\xi}_{k} \in \mathbb{Z}$

- $\begin{array}{l} \rightarrow \text{ Lattice of translations } \mathcal{L} \\ \rightarrow \text{ Logical operations: dual } \mathcal{L}^{\perp} \end{array}$
- Good against common noise Albert et al, PRA 97 (2018)

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! <u>Grid codes</u>: stabilized by (commuting) displacement operators \rightarrow underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001)

$$\mathcal{S} = \langle D\left(oldsymbol{\xi}_{1}
ight), \dots, D\left(oldsymbol{\xi}_{2n}
ight)
angle$$
 Code: $D\left(oldsymbol{\xi}_{j}
ight) |\psi
angle = |\psi
angle$ $oldsymbol{\xi}_{i}^{T} J oldsymbol{\xi}_{k} \in \mathbb{Z}$

→ Lattice of translations
$$\mathcal{L}$$

→ Logical operations: dual \mathcal{L}^{\perp}

- Good against common noise Albert et al, PRA 97 (2018)
- Logical Clifford = Gaussian operations

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! <u>Grid codes</u>: stabilized by (commuting) displacement operators \rightarrow underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001)

 $\boldsymbol{\xi}_{j}^{I} J \boldsymbol{\xi}_{k} \in \mathbb{Z}$

- → Lattice of translations \mathcal{L} → Logical operations: dual \mathcal{L}^{\perp}
- Good against common noise Albert et al, PRA 97 (2018)
- Logical Clifford = Gaussian operations
- Can be effective qubits, combined with qubit codes Vuillot et al, PRA 99 (2019) Noh&Chamberland PRA 101 (2020) Bourassa et al, Quantum 5 (2021)

É. Q

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! <u>Grid codes</u>: stabilized by (commuting) displacement operators \rightarrow underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001)

 $\boldsymbol{\xi}_{i}^{I} J \boldsymbol{\xi}_{k} \in \mathbb{Z}$

- → Lattice of translations \mathcal{L} → Logical operations: dual \mathcal{L}^{\perp}
- Good against common noise Albert et al, PRA 97 (2018)
- Logical Clifford = Gaussian operations
- Can be effective qubits, combined with qubit codes Vuillot et al, PRA 99 (2019) Noh&Chamberland PRA 101 (2020) Bourassa et al, Quantum 5 (2021)
 - Can protect CV systems Noh et al, PRL 125 (2020)

"Logical subspace": finite photon number, odd/even photon number, or...translation symmetries! <u>Grid codes</u>: stabilized by (commuting) displacement operators \rightarrow underlying lattice

Gottesman, Kitaev, Preskill PRA 64 (2001)

$$\mathcal{S} = \langle D\left(\boldsymbol{\xi}_{1}\right), \dots, D\left(\boldsymbol{\xi}_{2n}\right) \rangle \Longrightarrow \text{Code: } D\left(\boldsymbol{\xi}_{j}\right) \left|\psi\right\rangle = \left|\psi\right\rangle$$

 $\boldsymbol{\xi}_{i}^{I} J \boldsymbol{\xi}_{k} \in \mathbb{Z}$

- → Lattice of translations \mathcal{L} → Logical operations: dual \mathcal{L}^{\perp}
- Good against common noise Albert et al, PRA 97 (2018)
- Logical Clifford = Gaussian operations
- Can be effective qubits, combined with qubit codes Vuillot et al, PRA 99 (2019) Noh&Chamberland PRA 101 (2020) Bourassa et al, Quantum 5 (2021)
 - Can protect CV systems Noh et al, PRL 125 (2020)
 - Logical states experimentally accessible Flühmann et al, Nature 566 (2019) Campagne-Ibarcg et al, Nature 584 (2020)

For exponential noise suppression: more oscillators

For exponential noise suppression: more oscillators

Up to now: *concatenation* \rightarrow regard as effective qubits, add qubit-level code

For exponential noise suppression: more oscillators

Up to now: *concatenation* \rightarrow regard as effective qubits, add qubit-level code

 \rightarrow "lattice picture" only for individual oscillators,

not for whole code

For exponential noise suppression: more oscillators

Up to now: *concatenation* \rightarrow regard as effective qubits, add qubit-level code

→ "lattice picture" only for individual oscillators, not for whole code

Q: Can lattice properties be exploited more?

For exponential noise suppression: more oscillators

Up to now: *concatenation* \rightarrow regard as effective qubits, add qubit-level code \rightarrow "lattice picture" only for individual oscillators, **not** for **whole code**

Q: Can lattice properties be exploited more?

upshot: lattices are very well studied!

Good lattice intros:

J. Conway and N. Sloane.

Sphere packings, lattices and groups, volume 290. 1988

D. Micciancio.

Cse 206a: Lattice algorithms and applications, 2014

For exponential noise suppression: more oscillators

Up to now: *concatenation* \rightarrow regard as effective qubits, add qubit-level code "lattice picture" only for individual oscillators

→ "lattice picture" only for individual oscillators, not for whole code

Q: Can lattice properties be exploited more?

upshot:

lattices are very well studied!

...but not so much for GKP!

Gottesman, Kitaev, Preskill PRA 64 (2001) Harrington, Preskill PRA 64 (2001) Hänggli, Heinze, König, PRA 102 (2020) Hänggli, König, arXiv:2102.05545 (2021)

Good lattice intros:

J. Conway and N. Sloane. Sphere packings, lattices and groups, volume 290. 1988 D. Micciancio. Cse 206a: Lattice algorithms and applications, 2014

For exponential noise suppression: more oscillators

Up to now: *concatenation* \rightarrow regard as effective qubits, add qubit-level code

→ "lattice picture" only for individual oscillators, not for whole code

Q: Can lattice properties be exploited more?

upshot:

lattices are very well studied!

... but not so much for GKP!

Gottesman, Kitaev, Preskill PRA 64 (2001) Harrington, Preskill PRA 64 (2001) Hänggli, Heinze, König, PRA 102 (2020) Hänggli, König, arXiv:2102.05545 (2021)

Good lattice intros:

J. Conway and N. Sloane.

Sphere packings, lattices and groups, volume 290. 1988

D. Micciancio.

Cse 206a: Lattice algorithms and applications, 2014

Outline

- 1. Lattice formalism
- 2. Code properties from lattice bases
- 3. Symplectic operations
- 4. Distance bounds for GKP codes
- 5. Decoding problem and Θ functions
- 6. GKP codes beyond concatenation

Lattice formalism

$$\mathcal{S} = \langle D(\boldsymbol{\xi}_1), \dots, D(\boldsymbol{\xi}_{2n}) \rangle$$
$$M = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n})^T$$

Lattice formalism

 $\mathcal{S} = \langle D(\boldsymbol{\xi}_1), \dots, D(\boldsymbol{\xi}_{2n}) \rangle \qquad A_{jk} = (MJM^T)_{jk} \in \mathbb{Z} \Rightarrow [D(\boldsymbol{\xi}_j), D(\boldsymbol{\xi}_k)] = 0$ $M = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n})^T$

$\mathcal{S} = \langle D(\boldsymbol{\xi}_1), \dots, D(\boldsymbol{\xi}_{2n}) \rangle \qquad A_{jk} = (MJM^T)_{jk} \in \mathbb{Z} \Rightarrow [D(\boldsymbol{\xi}_j), D(\boldsymbol{\xi}_k)] = 0$ $M = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n})^T \qquad \det M \neq 0 \quad \Rightarrow d < \infty$

$\mathcal{S} = \langle D(\boldsymbol{\xi}_1), \dots, D(\boldsymbol{\xi}_{2n}) \rangle \qquad A_{jk} = (MJM^T)_{jk} \in \mathbb{Z} \Rightarrow [D(\boldsymbol{\xi}_j), D(\boldsymbol{\xi}_k)] = 0$ $M = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n})^T \qquad \det M \neq 0 \quad \Rightarrow d < \infty$

$$D(\boldsymbol{\xi})D(\boldsymbol{\eta}) = e^{-i\pi\boldsymbol{\xi}^T J\boldsymbol{\eta}} D\left(\boldsymbol{\xi} + \boldsymbol{\eta}\right)$$
$$D(\boldsymbol{\xi})D(\boldsymbol{\eta}) = e^{-i\pi\boldsymbol{\xi}^T J\boldsymbol{\eta}} D\left(\boldsymbol{\xi} + \boldsymbol{\eta}\right) \Longrightarrow (-1)^{f(\boldsymbol{a},M)} D\left(\boldsymbol{a}^T M\right) \in \mathcal{S} \ \forall \boldsymbol{a} \in \mathbb{Z}^{2n}$$

$$D(\boldsymbol{\xi})D(\boldsymbol{\eta}) = e^{-i\pi\boldsymbol{\xi}^T J\boldsymbol{\eta}} D\left(\boldsymbol{\xi} + \boldsymbol{\eta}\right) \Longrightarrow (-1)^{f(\boldsymbol{a},M)} D\left(\boldsymbol{a}^T M\right) \in \mathcal{S} \ \forall \boldsymbol{a} \in \mathbb{Z}^{2n}$$

$$\mathcal{S} \simeq \mathcal{L} = \left\{ \boldsymbol{\xi} \in \mathbb{R}^{2n} | \boldsymbol{\xi}^T = \boldsymbol{a}^T M, \ \boldsymbol{a} \in \mathbb{Z}^{2n}
ight\}$$

$$D(\boldsymbol{\xi})D(\boldsymbol{\eta}) = e^{-i\pi\boldsymbol{\xi}^T J\boldsymbol{\eta}} D\left(\boldsymbol{\xi} + \boldsymbol{\eta}\right) \Longrightarrow (-1)^{f(\boldsymbol{a},M)} D\left(\boldsymbol{a}^T M\right) \in \mathcal{S} \ \forall \boldsymbol{a} \in \mathbb{Z}^{2n}$$

$$\mathcal{S} \simeq \mathcal{L} = \left\{ \boldsymbol{\xi} \in \mathbb{R}^{2n} | \boldsymbol{\xi}^T = \boldsymbol{a}^T M, \ \boldsymbol{a} \in \mathbb{Z}^{2n}
ight\}$$

Logical Pauli: $\mathcal{L}^{\perp} = \left\{ \boldsymbol{\xi}^{\perp} \in \mathbb{R}^{2n} \mid \left(\boldsymbol{\xi}^{\perp} \right)^T J \boldsymbol{\xi} \in \mathbb{Z} \; \forall \boldsymbol{\xi} \in \mathcal{L} \right\}$

$$D(\boldsymbol{\xi})D(\boldsymbol{\eta}) = e^{-i\pi\boldsymbol{\xi}^T J\boldsymbol{\eta}} D\left(\boldsymbol{\xi} + \boldsymbol{\eta}\right) \Longrightarrow (-1)^{f(\boldsymbol{a},M)} D\left(\boldsymbol{a}^T M\right) \in \mathcal{S} \ \forall \boldsymbol{a} \in \mathbb{Z}^{2n}$$

$$\mathcal{S} \simeq \mathcal{L} = \left\{ \boldsymbol{\xi} \in \mathbb{R}^{2n} | \boldsymbol{\xi}^T = \boldsymbol{a}^T M, \ \boldsymbol{a} \in \mathbb{Z}^{2n} \right\}$$

Logical Pauli: \mathcal{L}^-

$$^{\perp} = \left\{ \boldsymbol{\xi}^{\perp} \in \mathbb{R}^{2n} \mid \left(\boldsymbol{\xi}^{\perp} \right)^{T} J \boldsymbol{\xi} \in \mathbb{Z} \; \forall \boldsymbol{\xi} \in \mathcal{L} \right\} \qquad M^{\perp} = (JM^{T})^{-1}$$

$$D(\boldsymbol{\xi})D(\boldsymbol{\eta}) = e^{-i\pi\boldsymbol{\xi}^T J\boldsymbol{\eta}} D\left(\boldsymbol{\xi} + \boldsymbol{\eta}\right) \Longrightarrow (-1)^{f(\boldsymbol{a},M)} D\left(\boldsymbol{a}^T M\right) \in \mathcal{S} \ \forall \boldsymbol{a} \in \mathbb{Z}^{2n}$$

$$\mathcal{S} \simeq \mathcal{L} = \left\{ \boldsymbol{\xi} \in \mathbb{R}^{2n} | \boldsymbol{\xi}^T = \boldsymbol{a}^T M, \ \boldsymbol{a} \in \mathbb{Z}^{2n} \right\}$$

Logical Pauli: $\mathcal{L}^{\perp} = \left\{ \boldsymbol{\xi}^{\perp} \in \mathbb{R}^{2n} \mid \left(\boldsymbol{\xi}^{\perp} \right)^T J \boldsymbol{\xi} \in \mathbb{Z} \; \forall \boldsymbol{\xi} \in \mathcal{L} \right\} \qquad M^{\perp} = (JM^T)^{-1}$

Log. dim. : $d^2 = |\mathcal{L}^{\perp}/\mathcal{L}| = |\det M|/|\det M^{\perp}| = \det A = (\det M)^2$

$$D(\boldsymbol{\xi})D(\boldsymbol{\eta}) = e^{-i\pi\boldsymbol{\xi}^T J\boldsymbol{\eta}} D\left(\boldsymbol{\xi} + \boldsymbol{\eta}\right) \Longrightarrow (-1)^{f(\boldsymbol{a},M)} D\left(\boldsymbol{a}^T M\right) \in \mathcal{S} \ \forall \boldsymbol{a} \in \mathbb{Z}^{2n}$$

$$\mathcal{S} \simeq \mathcal{L} = \left\{ \boldsymbol{\xi} \in \mathbb{R}^{2n} | \boldsymbol{\xi}^T = \boldsymbol{a}^T M, \ \boldsymbol{a} \in \mathbb{Z}^{2n} \right\}$$

Logical Pauli: $\mathcal{L}^{\perp} = \left\{ \boldsymbol{\xi}^{\perp} \in \mathbb{R}^{2n} \mid \left(\boldsymbol{\xi}^{\perp} \right)^T J \boldsymbol{\xi} \in \mathbb{Z} \; \forall \boldsymbol{\xi} \in \mathcal{L} \right\} \qquad M^{\perp} = (JM^T)^{-1}$

Log. dim. : $d^2 = |\mathcal{L}^{\perp}/\mathcal{L}| = |\det M|/|\det M^{\perp}| = \det A = (\det M)^2$

Change of basis: $M \mapsto UM \Rightarrow M^{\perp} \mapsto U^{-T}M^{\perp}$

$$D(\boldsymbol{\xi})D(\boldsymbol{\eta}) = e^{-i\pi\boldsymbol{\xi}^T J\boldsymbol{\eta}} D\left(\boldsymbol{\xi} + \boldsymbol{\eta}\right) \Longrightarrow (-1)^{f(\boldsymbol{a},M)} D\left(\boldsymbol{a}^T M\right) \in \mathcal{S} \ \forall \boldsymbol{a} \in \mathbb{Z}^{2n}$$

$$\mathcal{S} \simeq \mathcal{L} = \left\{ \boldsymbol{\xi} \in \mathbb{R}^{2n} | \boldsymbol{\xi}^T = \boldsymbol{a}^T M, \ \boldsymbol{a} \in \mathbb{Z}^{2n} \right\}$$

Logical Pauli:
$$\mathcal{L}^{\perp} = \left\{ \boldsymbol{\xi}^{\perp} \in \mathbb{R}^{2n} \mid \left(\boldsymbol{\xi}^{\perp} \right)^T J \boldsymbol{\xi} \in \mathbb{Z} \; \forall \boldsymbol{\xi} \in \mathcal{L} \right\} \qquad M^{\perp} = (JM^T)^{-1}$$

Log. dim. : $d^2 = |\mathcal{L}^{\perp}/\mathcal{L}| = |\det M|/|\det M^{\perp}| = \det A = (\det M)^2$

Change of basis: $M \mapsto UM \Rightarrow M^{\perp} \mapsto U^{-T}M^{\perp}$ \longrightarrow $A \mapsto \begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix}_{43}$ Gottesman, Kitaev, Preskill PRA 64 (2001)

Results

Exploit basis manipulations/properties to study codes

$$M = \left(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n}\right)^T$$

Exploit basis manipulations/properties to study codes

$$M = \left(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n}\right)^T$$

Theorem (Hadamard's bound):

Let
$$C = \max_{j} ||\boldsymbol{\xi}_{j}||, \ d = 2^{k} = \det M.$$
 Then $k \leq 2n \log_{2} C$

Exploit basis manipulations/properties to study codes

$$M = \left(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n}\right)^T$$

Theorem (Hadamard's bound):

Let
$$C = \max_{j} ||\boldsymbol{\xi}_{j}||, \ d = 2^{k} = \det M.$$
 Then $k \leq 2n \log_{2} C$

 \Rightarrow Encoding ratio related to "experimental measurement hardness"

Exploit basis manipulations/properties to study codes

$$M = \left(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n}\right)^T$$

Theorem (Hadamard's bound):

Let
$$C = \max_{i} ||\boldsymbol{\xi}_{j}||, \ d = 2^{k} = \det M.$$
 Then $k \leq 2n \log_{2} C$

 \Rightarrow Encoding ratio related to "experimental measurement hardness"

Resource savings from lattice basis reduction

Ex: L=3 surface code

Exploit basis manipulations/properties to study codes

$$M = \left(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n}\right)^T$$

Theorem (Hadamard's bound):

Let
$$C = \max_{i} ||\boldsymbol{\xi}_{j}||, \ d = 2^{k} = \det M.$$
 Then $k \leq 2n \log_{2} C$

 \Rightarrow Encoding ratio related to "experimental measurement hardness"

Exploit basis manipulations/properties to study codes

$$M = \left(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n}\right)^T$$

Theorem (Hadamard's bound):

Let
$$C = \max_{i} ||\boldsymbol{\xi}_{j}||, \ d = 2^{k} = \det M.$$
 Then $k \leq 2n \log_{2} C$

 \Rightarrow Encoding ratio related to "experimental measurement hardness"

Exploit basis manipulations/properties to study codes

$$M = \left(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n}\right)^T$$

Theorem (Hadamard's bound):

Let
$$C = \max_{i} ||\boldsymbol{\xi}_{j}||, \ d = 2^{k} = \det M.$$
 Then $k \leq 2n \log_{2} C$

 \Rightarrow Encoding ratio related to "experimental measurement hardness"

Exploit basis manipulations/properties to study codes

$$M = \left(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n}\right)^T$$

52

Theorem (Hadamard's bound):

Let
$$C = \max_{i} ||\boldsymbol{\xi}_{j}||, \ d = 2^{k} = \det M.$$
 Then $k \leq 2n \log_{2} C$

 \Rightarrow Encoding ratio related to "experimental measurement hardness"

Exploit basis manipulations/properties to study codes

$$M = \left(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n}\right)^T$$

Theorem (Hadamard's bound):

Let
$$C = \max_{i} ||\boldsymbol{\xi}_{j}||, \ d = 2^{k} = \det M.$$
 Then $k \leq 2n \log_{2} C$

 \Rightarrow Encoding ratio related to "experimental measurement hardness"

Exploit basis manipulations/properties to study codes

$$M = \left(\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{2n}\right)^T$$

Theorem (Hadamard's bound):

Let
$$C = \max_{i} ||\boldsymbol{\xi}_{j}||, \ d = 2^{k} = \det M.$$
 Then $k \leq 2n \log_{2} C$

 \Rightarrow Encoding ratio related to "experimental measurement hardness"

$$U_S = \exp\left(-i\hat{x}^T H \hat{x}
ight)$$

$$U_{S} = \exp\left(-i\hat{\boldsymbol{x}}^{T}H\hat{\boldsymbol{x}}\right)$$
$$U_{S}\hat{\boldsymbol{x}}U_{S}^{\dagger} = S\hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2n), \quad SJS^{T} = J$$

 $U_{S} = \exp\left(-i\hat{\boldsymbol{x}}^{T}H\hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger}\mathcal{S}U_{S} \Leftrightarrow M \mapsto MS^{T}, \quad M^{\perp} \mapsto M^{\perp}S^{T}$ $U_{S}\hat{\boldsymbol{x}}U_{S}^{\dagger} = S\hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2n), \quad SJS^{T} = J$

$$U_{S} = \exp\left(-i\hat{\boldsymbol{x}}^{T}H\hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger}\mathcal{S}U_{S} \Leftrightarrow M \mapsto MS^{T}, \quad M^{\perp} \mapsto M^{\perp}S^{T}$$
$$U_{S}\hat{\boldsymbol{x}}U_{S}^{\dagger} = S\hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2n), \quad SJS^{T} = J$$

Theorem (symplectically equivalent codes):

Given
$$\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M = NS^T$$
 iff $MJM^T = NJN^T$ (in canonical form)
$$A_{M,N} = \begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix}$$

$$U_{S} = \exp\left(-i\hat{\boldsymbol{x}}^{T}H\hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger}\mathcal{S}U_{S} \Leftrightarrow M \mapsto MS^{T}, \quad M^{\perp} \mapsto M^{\perp}S^{T}$$
$$U_{S}\hat{\boldsymbol{x}}U_{S}^{\dagger} = S\hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2n), \quad SJS^{T} = J$$

Theorem (symplectically equivalent codes):

Given
$$\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M = NS^T$$
 iff $MJM^T = NJN^T$ (in canonical form)
Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)
 $A_{M,N} = \begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix}$

$$U_{S} = \exp\left(-i\hat{\boldsymbol{x}}^{T}H\hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger}\mathcal{S}U_{S} \Leftrightarrow M \mapsto MS^{T}, \quad M^{\perp} \mapsto M^{\perp}S^{T}$$
$$U_{S}\hat{\boldsymbol{x}}U_{S}^{\dagger} = S\hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2n), \quad SJS^{T} = J$$

Theorem (symplectically equivalent codes):

Given
$$\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M = NS^T$$
 iff $MJM^T = NJN^T$ (in canonical form)
Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)
 $A_{M,N} = \begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix}$

Proof sketch:

$$U_{S} = \exp\left(-i\hat{\boldsymbol{x}}^{T}H\hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger}\mathcal{S}U_{S} \Leftrightarrow M \mapsto MS^{T}, \quad M^{\perp} \mapsto M^{\perp}S^{T}$$
$$U_{S}\hat{\boldsymbol{x}}U_{S}^{\dagger} = S\hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2n), \quad SJS^{T} = J$$

Theorem (symplectically equivalent codes):

Given $\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M = NS^T$ iff $MJM^T = NJN^T$ (in canonical form) Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020) $A_{M,N} = \begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix}$

Proof sketch:

define $Z := I_2 \otimes D^{-\frac{1}{2}}, \quad \tilde{M} := ZM, \quad \tilde{N} := ZN$

$$U_{S} = \exp\left(-i\hat{\boldsymbol{x}}^{T}H\hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger}\mathcal{S}U_{S} \Leftrightarrow M \mapsto MS^{T}, \quad M^{\perp} \mapsto M^{\perp}S^{T}$$
$$U_{S}\hat{\boldsymbol{x}}U_{S}^{\dagger} = S\hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2n), \quad SJS^{T} = J$$

Theorem (symplectically equivalent codes):

Given $\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M = NS^T$ iff $MJM^T = NJN^T$ (in canonical form) Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020) $A_{M,N} = \begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix}$

Proof sketch:

define $Z := I_2 \otimes D^{-\frac{1}{2}}, \quad \tilde{M} := ZM, \quad \tilde{N} := ZN$ then $\tilde{M}J\tilde{M}^T = \tilde{N}J\tilde{N}^T = J$

$$U_{S} = \exp\left(-i\hat{\boldsymbol{x}}^{T}H\hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger}\mathcal{S}U_{S} \Leftrightarrow M \mapsto MS^{T}, \quad M^{\perp} \mapsto M^{\perp}S^{T}$$
$$U_{S}\hat{\boldsymbol{x}}U_{S}^{\dagger} = S\hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2n), \quad SJS^{T} = J$$

Theorem (symplectically equivalent codes):

Given $\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M = NS^T$ iff $MJM^T = NJN^T$ (in canonical form) Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020) $A_{M,N} = \begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix}$

Proof sketch:

define $Z := I_2 \otimes D^{-\frac{1}{2}}$, $\tilde{M} := ZM$, $\tilde{N} := ZN$ then $\tilde{M}J\tilde{M}^T = \tilde{N}J\tilde{N}^T = J$ then symplectic M. are a group $\tilde{M} = \tilde{N}R^T$

$$U_{S} = \exp\left(-i\hat{\boldsymbol{x}}^{T}H\hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger}\mathcal{S}U_{S} \Leftrightarrow M \mapsto MS^{T}, \quad M^{\perp} \mapsto M^{\perp}S^{T}$$
$$U_{S}\hat{\boldsymbol{x}}U_{S}^{\dagger} = S\hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2n), \quad SJS^{T} = J$$

Theorem (symplectically equivalent codes):

Given $\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M = NS^T$ iff $MJM^T = NJN^T$ (in canonical form) Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020) $A_{M,N} = \begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix}$

Proof sketch:

 $\begin{array}{ll} \text{define } Z:=I_2\otimes D^{-\frac{1}{2}}, \quad \tilde{M}:=ZM, \quad \tilde{N}:=ZN \\ \text{then } \tilde{M}J\tilde{M}^T=\tilde{N}J\tilde{N}^T=J \quad \text{then symplectic M. are a group } \tilde{M}\ =\ \tilde{N}R^T \\ \end{array}$

$$U_{S} = \exp\left(-i\hat{\boldsymbol{x}}^{T}H\hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger}\mathcal{S}U_{S} \Leftrightarrow M \mapsto MS^{T}, \quad M^{\perp} \mapsto M^{\perp}S^{T}$$
$$U_{S}\hat{\boldsymbol{x}}U_{S}^{\dagger} = S\hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2n), \quad SJS^{T} = J$$

Theorem (symplectically equivalent codes):

Given
$$\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M = NS^T$$
 iff $MJM^T = NJN^T$ (in canonical form)
Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)
Corollary :

Any code with
$$d = 2$$
 is s.e. to $\mathcal{S}_{\Box}^{(2)} = \left\langle e^{i2\sqrt{\pi}\hat{q}_1}, e^{-i2\sqrt{\pi}\hat{p}_1}, e^{i\sqrt{\pi}\hat{q}_j}, e^{i\sqrt{\pi}\hat{p}_j} \right\rangle, \ j > 1$

$$U_{S} = \exp\left(-i\hat{\boldsymbol{x}}^{T}H\hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger}\mathcal{S}U_{S} \Leftrightarrow M \mapsto MS^{T}, \quad M^{\perp} \mapsto M^{\perp}S^{T}$$
$$U_{S}\hat{\boldsymbol{x}}U_{S}^{\dagger} = S\hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2n), \quad SJS^{T} = J$$

Theorem (symplectically equivalent codes):

Given
$$\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M = NS^T$$
 iff $MJM^T = NJN^T$ (in canonical form)
Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)
Corollary :
Any code with $d = 2$ is s.e. to $S_{\Box}^{(2)} = \left\langle e^{i2\sqrt{\pi}\hat{q}_1}, e^{-i2\sqrt{\pi}\hat{p}_1}, e^{i\sqrt{\pi}\hat{q}_j}, e^{i\sqrt{\pi}\hat{p}_j} \right\rangle, j > 1$

one qubit encoded in mode 1, no qubit on other modes

$$U_{S} = \exp\left(-i\hat{\boldsymbol{x}}^{T}H\hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger}\mathcal{S}U_{S} \Leftrightarrow M \mapsto MS^{T}, \quad M^{\perp} \mapsto M^{\perp}S^{T}$$
$$U_{S}\hat{\boldsymbol{x}}U_{S}^{\dagger} = S\hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2n), \quad SJS^{T} = J$$

Theorem (symplectically equivalent codes):

Given
$$\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M = NS^T$$
 iff $MJM^T = NJN^T$ (in canonical form)
Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)
Corollary :
Any code with $d = 2$ is s.e. to $S_{\Box}^{(2)} = \left\langle e^{i2\sqrt{\pi}\hat{q}_1}, e^{-i2\sqrt{\pi}\hat{p}_1}, e^{i\sqrt{\pi}\hat{q}_j}, e^{i\sqrt{\pi}\hat{p}_j} \right\rangle, j > 1$
one qubit encoded in mode 1, no qubit on other modes
Generalizes to higher logical dimensions $M_{\Box}JM_{\Box}^T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \otimes \operatorname{diag} \{d_1, \dots, d_n\}$

$$U_{S} = \exp\left(-i\hat{\boldsymbol{x}}^{T}H\hat{\boldsymbol{x}}\right), \quad \mathcal{S} \mapsto U_{S}^{\dagger}\mathcal{S}U_{S} \Leftrightarrow M \mapsto MS^{T}, \quad M^{\perp} \mapsto M^{\perp}S^{T}$$
$$U_{S}\hat{\boldsymbol{x}}U_{S}^{\dagger} = S\hat{\boldsymbol{x}} \quad S \in \operatorname{Sp}(2n), \quad SJS^{T} = J$$

Theorem (symplectically equivalent codes):

Given
$$\mathcal{L}(M), \mathcal{L}(N), \exists S \mid M = NS^T$$
 iff $MJM^T = NJN^T$ (in canonical form)
Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)
Corollary :
Any code with $d = 2$ is s.e. to $S_{\Box}^{(2)} = \left\langle e^{i2\sqrt{\pi}\hat{q}_1}, e^{-i2\sqrt{\pi}\hat{p}_1}, e^{i\sqrt{\pi}\hat{q}_j}, e^{i\sqrt{\pi}\hat{p}_j} \right\rangle, j > 1$
one qubit encoded in mode 1, no qubit on other modes
Generalizes to higher logical dimensions $M_{\Box}JM_{\Box}^T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \otimes \operatorname{diag} \{d_1, \dots, d_n\}$
Example of inequivalent codes: 2 qubits in 2 modes can have $D = \operatorname{diag}(4, 1)$ or $D = \operatorname{diag}(2, 2)$

Hp: small shifts are more likely

Hp: small shifts are more likely

$$\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})$$

Hp: small shifts are more likely
$$\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})$$

Define: $\Delta = \Delta(\mathcal{L}) := \min_{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp}/\mathcal{L}} \|\boldsymbol{x}\|$
Hp: small shifts are more likely $\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})$ Define: $\Delta = \Delta(\mathcal{L}) := \min_{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp}/\mathcal{L}} \|\boldsymbol{x}\|$

For [n, k, d] qubit code **concatenated** with local GKP: $\Delta_{conc} \ge \sqrt{d\Delta_{loc}}$

Hp: small shifts are more likely $\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})$ Define: $\Delta = \Delta(\mathcal{L}) := \min_{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp}/\mathcal{L}} \|\boldsymbol{x}\|$

For [n, k, d] qubit code **concatenated** with local GKP: $\Delta_{\text{conc}} \ge \sqrt{d}\Delta_{\text{loc}}$

Proof sketch:

Hp: small shifts are more likely $\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})$ Define: $\Delta = \Delta(\mathcal{L}) := \min_{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp}/\mathcal{L}} \|\boldsymbol{x}\|$

For [n, k, d] qubit code **concatenated** with local GKP: $\Delta_{conc} \ge \sqrt{d\Delta_{loc}}$

Proof sketch:

Note
$$\mathcal{L}_{\mathrm{GKP}} \subseteq \mathcal{L}_{\mathrm{conc}} \subseteq \mathcal{L}_{\mathrm{conc}}^{\perp} \subseteq \mathcal{L}_{\mathrm{GKP}}^{\perp}$$
 $\mathcal{L}_{\mathrm{GKP}} = \bigoplus_{j=1}^{n} \mathcal{L}_{\mathrm{loc},j}$

Hp: small shifts are more likely $\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})$ Define: $\Delta = \Delta(\mathcal{L}) := \min_{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp}/\mathcal{L}} \|\boldsymbol{x}\|$

For [n, k, d] qubit code **concatenated** with local GKP: $\Delta_{conc} \ge \sqrt{d\Delta_{loc}}$

Proof sketch:

$$\begin{array}{ll} \text{Note} & \mathcal{L}_{\text{GKP}} \subseteq \mathcal{L}_{\text{conc}} \subseteq \mathcal{L}_{\text{conc}}^{\perp} \subseteq \mathcal{L}_{\text{GKP}}^{\perp} & \mathcal{L}_{\text{GKP}} = \bigoplus_{j=1}^{\perp} \mathcal{L}_{\text{loc},j} \\ \end{array}$$
Take minimal $\boldsymbol{\xi}^{\perp} \in \mathcal{L}_{\text{conc}}^{\perp} \Rightarrow \boldsymbol{\xi}^{\perp} \in \mathcal{L}_{\text{GKP}}^{\perp} = \oplus_{j} \mathcal{L}_{\text{loc},j}^{\perp} \end{array}$

n

Hp: small shifts are more likely

Hp: small shifts are more likely
$$\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})$$

Define: $\Delta = \Delta (\mathcal{L}) := \min_{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp}/\mathcal{L}} \|\boldsymbol{x}\|$

For [n, k, d] qubit code **concatenated** with local GKP: $\Delta_{\text{conc}} \ge \sqrt{d\Delta_{\text{loc}}}$

Proof sketch:

Note
$$\mathcal{L}_{\mathrm{GKP}} \subseteq \mathcal{L}_{\mathrm{conc}} \subseteq \mathcal{L}_{\mathrm{conc}}^{\perp} \subseteq \mathcal{L}_{\mathrm{GKP}}^{\perp}$$
 $\mathcal{L}_{\mathrm{GKP}} = \bigoplus_{j=1}^{l} \mathcal{L}_{\mathrm{loc},j}$ Take minimal $\boldsymbol{\xi}^{\perp} \in \mathcal{L}_{\mathrm{conc}}^{\perp} \Rightarrow \boldsymbol{\xi}^{\perp} \in \mathcal{L}_{\mathrm{GKP}}^{\perp} = \oplus_{j} \mathcal{L}_{\mathrm{loc},j}^{\perp}$ $\mathcal{L}_{\mathrm{GKP}} = \bigoplus_{j=1}^{l} \mathcal{L}_{\mathrm{loc},j}$ write $\boldsymbol{\xi}^{\perp} = \sum_{j=1}^{l \ge d} a_j \boldsymbol{\xi}_{\mathrm{loc},j}^{\perp}$ $\boldsymbol{\xi}^{\perp} = \sum_{j=1}^{l \ge d} a_j \boldsymbol{\xi}_{\mathrm{loc},j}^{\perp}$

77

n

Hp: small shifts are more likely $\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})$ Define: $\Delta = \Delta (\mathcal{L}) := \min_{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp}/\mathcal{L}} \|\boldsymbol{x}\|$

For [n, k, d] qubit code **concatenated** with local GKP: $\Delta_{\text{conc}} \ge \sqrt{d}\Delta_{\text{loc}}$

Proof sketch:

Note
$$\mathcal{L}_{\mathrm{GKP}} \subseteq \mathcal{L}_{\mathrm{conc}} \subseteq \mathcal{L}_{\mathrm{conc}}^{\perp} \subseteq \mathcal{L}_{\mathrm{GKP}}^{\perp}$$
 $\mathcal{L}_{\mathrm{GKP}} = \bigoplus_{j=1}^{n} \mathcal{L}_{\mathrm{loc},j}$ Take minimal $\boldsymbol{\xi}^{\perp} \in \mathcal{L}_{\mathrm{conc}}^{\perp} \Rightarrow \boldsymbol{\xi}^{\perp} \in \mathcal{L}_{\mathrm{GKP}}^{\perp} = \oplus_{j} \mathcal{L}_{\mathrm{loc},j}^{\perp}$ $\mathcal{L}_{\mathrm{GKP}} = \bigoplus_{j=1}^{n} \mathcal{L}_{\mathrm{loc},j}$ write $\boldsymbol{\xi}^{\perp} = \sum_{j=1}^{l \ge d} a_j \boldsymbol{\xi}_{\mathrm{loc},j}^{\perp}$ and note they are all orthogonal.

Hp: small shifts are more likely $\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x})$ Define: $\Delta = \Delta(\mathcal{L}) := \min_{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp}/\mathcal{L}} \|\boldsymbol{x}\|$

For [n, k, d] qubit code **concatenated** with local GKP: $\Delta_{\text{conc}} \ge \sqrt{d}\Delta_{\text{loc}}$

From transference theorems we have the following Theorem (distance bound I):

Hp: small shifts are more likely $\mathcal{N}(\rho) \propto \int d^{2n} x e^{-\frac{||x||}{\sigma^2}} D(x) \rho D^{\dagger}(x)$

Define: $\Delta = \Delta \left(\mathcal{L} \right) := \min_{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp} / \mathcal{L}} \| \boldsymbol{x} \|$

For [n, k, d] qubit code **concatenated** with local GKP: $\Delta_{\text{conc}} \ge \sqrt{d}\Delta_{\text{loc}}$

From transference theorems we have the following Theorem (distance bound I):

For a code with lattice \mathcal{L} : $\Delta \ge \lambda_1 \left(\mathcal{L}^\perp \right) \ge \lambda_{2n}^{-1} \left(\mathcal{L} \right) \ge C^{-1}$ and $\Delta \le \lambda_{2n} \left(\mathcal{L}^\perp \right) \le \frac{2n}{\lambda_1 \left(\mathcal{L} \right)}$

Hp: small shifts are more likely
$$\mathcal{N}(\rho) \propto \int d^{2n} x e^{-\frac{||x||}{\sigma^2}} D(x) \rho D^{\dagger}(x)$$

Define: $\Delta = \Delta(\mathcal{L}) := \min_{0 \neq x \in \mathcal{L}^{\perp}/\mathcal{L}} ||x||$
For $[n, k, d]$ qubit code concatenated with local GKP: $\Delta_{\text{conc}} \ge \sqrt{d}\Delta_{\text{loc}}$
From transference theorems we have the following Theorem (distance bound I):
For a code with lattice $\mathcal{L} : \Delta \ge \lambda_1(\mathcal{L}^{\perp}) \ge \lambda_{2n}^{-1}(\mathcal{L}) \ge C^{-1}$ and $\Delta \le \lambda_{2n}(\mathcal{L}^{\perp}) \le \frac{2n}{\lambda_1(\mathcal{L})}$

$$\begin{array}{ll} \text{Hp: small shifts are more likely} \qquad \mathcal{N}\left(\rho\right) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x}) \\ \text{Define:} \boxed{\Delta = \Delta\left(\mathcal{L}\right) := \min_{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp} / \mathcal{L}} \|\boldsymbol{x}\|}_{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp} / \mathcal{L}} \|\boldsymbol{x}\|} \\ \text{For } \left[\!\left[n, k, d\right]\!\right] \text{ qubit code concatenated with local GKP: } \Delta_{\text{conc}} \geq \sqrt{d} \Delta_{\text{loc}} \right] \\ \text{From transference theorems we have the following Theorem (distance bound I):} \\ \hline \text{For a code with lattice } \mathcal{L} : \Delta \geq \lambda_1 \left(\mathcal{L}^{\perp}\right) \geq \lambda_{2n}^{-1} \left(\mathcal{L}\right) \geq C^{-1} \text{ and } \Delta \leq \lambda_{2n} \left(\mathcal{L}^{\perp}\right) \leq \frac{2n}{\lambda_1 \left(\mathcal{L}\right)}} \\ \text{ with } \lambda_j \left(\mathcal{L}\right) = \min_{\mathbb{R}^+} \{r \mid \mathcal{L} \text{ contains } j \text{ l.i. vectors with } ||\boldsymbol{x}|| \leq r \} \quad \text{(successive minima)} \end{array}$$

$$\begin{array}{ll} \text{Hp: small shifts are more likely} \qquad \mathcal{N}\left(\rho\right) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x}) \\ \text{Define:} \quad \Delta = \Delta\left(\mathcal{L}\right) := \min_{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp} / \mathcal{L}} \|\boldsymbol{x}\| \\ \text{For } \left[\!\left[n, k, d\right]\!\right] \text{ qubit code concatenated with local GKP: } \Delta_{\text{conc}} \geq \sqrt{d} \Delta_{\text{loc}} \\ \text{From transference theorems we have the following Theorem (distance bound l):} \\ \hline \text{For a code with lattice } \mathcal{L} : \ \Delta \geq \lambda_1\left(\mathcal{L}^{\perp}\right) \geq \lambda_{2n}^{-1}\left(\mathcal{L}\right) \geq C^{-1} \ \text{ and } \ \Delta \leq \lambda_{2n}\left(\mathcal{L}^{\perp}\right) \leq \frac{2n}{\lambda_1\left(\mathcal{L}\right)} \\ \text{ with } \lambda_j\left(\mathcal{L}\right) = \min_{\mathbb{R}^+} \left\{r \mid \mathcal{L} \text{ contains } j \text{ l.i. vectors with } ||\boldsymbol{x}|| \leq r \right\} \quad \text{(successive minima)} \end{array}$$

From symplectic equivalence we have the following Theorem (distance bound II):

For a code with lattice $\mathcal{L}(M)|M = M_{\Box}S^T$, $MJM^T = \begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix}$ it holds $\Delta \leq \sqrt{\max_j D_{j,j}}^{-1} \operatorname{sq}(S)$

$$\begin{array}{ll} \text{Hp: small shifts are more likely} \qquad \mathcal{N}\left(\rho\right) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x}) \\ \text{Define:} \quad \Delta = \Delta\left(\mathcal{L}\right) := \min_{0 \neq \boldsymbol{x} \in \mathcal{L}^{\perp} / \mathcal{L}} \|\boldsymbol{x}\| \\ \text{For } \left[\!\left[n, k, d\right]\!\right] \text{ qubit code concatenated with local GKP: } \Delta_{\text{conc}} \geq \sqrt{d} \Delta_{\text{loc}} \\ \text{From transference theorems we have the following Theorem (distance bound l):} \\ \hline \text{For a code with lattice } \mathcal{L} : \ \Delta \geq \lambda_1\left(\mathcal{L}^{\perp}\right) \geq \lambda_{2n}^{-1}\left(\mathcal{L}\right) \geq C^{-1} \ \text{ and } \ \Delta \leq \lambda_{2n}\left(\mathcal{L}^{\perp}\right) \leq \frac{2n}{\lambda_1\left(\mathcal{L}\right)} \\ \text{ with } \lambda_j\left(\mathcal{L}\right) = \min_{\mathbb{R}^+} \left\{r \mid \mathcal{L} \text{ contains } j \text{ l.i. vectors with } ||\boldsymbol{x}|| \leq r \right\} \quad \text{(successive minima)} \end{array}$$

From symplectic equivalence we have the following Theorem (distance bound II):

For a code with lattice $\mathcal{L}(M)|M = M_{\Box}S^T$, $MJM^T = \begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix}$ it holds $\Delta \leq \sqrt{\max_j D_{j,j}}^{-1} \operatorname{sq}(S)$ Measure of "squeezing"

84

Lattice Θ function:

$$\Theta_{\mathcal{L}}(z) = \sum_{\boldsymbol{x} \in \mathcal{L}} q^{\boldsymbol{x}^T \boldsymbol{x}} = \sum_{\delta \in \mathcal{D}} N_{\delta} q^{\delta}$$

$$egin{aligned} q &= e^{i\pi z} \ \mathcal{D} &= ig\{ \|m{x}\|_2^2,\,m{x}\in\mathcal{L}ig\} \end{aligned}$$

consider
$$Q_{\mathcal{L}}(z) := \Theta_{\mathcal{L}^{\perp}}(z) - \Theta_{\mathcal{L}}(z) = N_{\Delta^2} q^{\Delta^2} + \dots$$

consider
$$Q_{\mathcal{L}}(z) := \Theta_{\mathcal{L}^{\perp}}(z) - \Theta_{\mathcal{L}}(z) = N_{\Delta^2} q^{\Delta^2} + \dots$$

Theorem:

Distance of GKP code $\mathcal{L}(M)$ completely specified by distance distribution $(\mathcal{D}, N_{\delta})$

consider
$$Q_{\mathcal{L}}(z) := \Theta_{\mathcal{L}^{\perp}}(z) - \Theta_{\mathcal{L}}(z) = N_{\Delta^2} q^{\Delta^2} + \dots$$

Theorem:

Distance of GKP code $\mathcal{L}(M)$ completely specified by distance distribution $(\mathcal{D}, N_{\delta})$

Corollary: (from the fact that concatenated codes ~ Construction A lattices)

consider
$$Q_{\mathcal{L}}(z) := \Theta_{\mathcal{L}^{\perp}}(z) - \Theta_{\mathcal{L}}(z) = N_{\Delta^2} q^{\Delta^2} + \dots$$

Theorem:

Distance of GKP code $\mathcal{L}(M)$ completely specified by distance distribution $(\mathcal{D}, N_{\delta})$

Corollary: (from the fact that concatenated codes ~ Construction A lattices)

Distance of **qubit** code completely specified by weight distribution $\{A_i\}_{i=0}^{2n}$ of stabs.

consider
$$Q_{\mathcal{L}}(z) := \Theta_{\mathcal{L}^{\perp}}(z) - \Theta_{\mathcal{L}}(z) = N_{\Delta^2} q^{\Delta^2} + \dots$$

Theorem:

Distance of GKP code $\mathcal{L}(M)$ completely specified by distance distribution $(\mathcal{D}, N_{\delta})$

Corollary: (from the fact that concatenated codes ~ Construction A lattices)

Distance of **qubit** code completely specified by weight distribution $\{A_i\}_{i=0}^{2n}$ of stabs.

Derived from ECC conds. in *P. Shor, R. Laflamme PRL 78 (1997) E. M. Rains, IEEE Trans. Inf. Th. 44 (1998)*

consider
$$Q_{\mathcal{L}}(z) := \Theta_{\mathcal{L}^{\perp}}(z) - \Theta_{\mathcal{L}}(z) = N_{\Delta^2} q^{\Delta^2} + \dots$$

Theorem:

Distance of GKP code $\mathcal{L}(M)$ completely specified by distance distribution $(\mathcal{D}, N_{\delta})$

Corollary: (from the fact that concatenated codes ~ Construction A lattices)

Distance of **qubit** code completely specified by weight distribution $\{A_i\}_{i=0}^{2n}$ of stabs.

Derived from ECC conds. in *P. Shor, R. Laflamme PRL 78 (1997) E. M. Rains, IEEE Trans. Inf. Th. 44 (1998)*

The distance of a GKP code can be estimated through logarithmic fit for small q

 $D\left(oldsymbol{e}
ight) \left|\psi
ight
angle$

.

$$\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x}) \qquad \Theta_{\mathcal{L}}(z) = \sum_{\boldsymbol{x} \in \mathcal{L}} q^{\boldsymbol{x}^T \boldsymbol{x}} = \sum_{\delta \in \mathcal{D}} N_{\delta} q^{\delta} \qquad q = e^{i\pi z}$$
$$\mathcal{D} = \left\{ \|\boldsymbol{x}\|_2^2, \, \boldsymbol{x} \in \mathcal{L} \right\}^{93}$$

 $D\left(M_{i}^{T}\right)D\left(\boldsymbol{e}\right)\left|\psi\right\rangle=e^{i2\pi M_{i}J\boldsymbol{e}}D\left(\boldsymbol{e}\right)\left|\psi\right\rangle$

$$\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x}) \qquad \Theta_{\mathcal{L}}(z) = \sum_{\boldsymbol{x} \in \mathcal{L}} q^{\boldsymbol{x}^T \boldsymbol{x}} = \sum_{\delta \in \mathcal{D}} N_{\delta} q^{\delta} \qquad q = e^{i\pi z}$$
$$\mathcal{D} = \left\{ \|\boldsymbol{x}\|_2^2, \, \boldsymbol{x} \in \mathcal{L} \right\}^{94}$$

 $D\left(M_{i}^{T}\right)D\left(\boldsymbol{e}\right)\left|\psi\right\rangle = e^{i2\pi M_{i}J\boldsymbol{e}}D\left(\boldsymbol{e}\right)\left|\psi\right\rangle \qquad \qquad \boldsymbol{s}(\boldsymbol{e}) = MJ\boldsymbol{e} \mod 1$

$$\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x}) \qquad \Theta_{\mathcal{L}}(z) = \sum_{\boldsymbol{x} \in \mathcal{L}} q^{\boldsymbol{x}^T \boldsymbol{x}} = \sum_{\delta \in \mathcal{D}} N_{\delta} q^{\delta} \qquad q = e^{i\pi z}$$
$$\mathcal{D} = \left\{ \|\boldsymbol{x}\|_2^2, \, \boldsymbol{x} \in \mathcal{L} \right\}^{95}$$

 $D\left(M_{i}^{T}\right)D\left(\boldsymbol{e}\right)\left|\psi\right\rangle = e^{i2\pi M_{i}J\boldsymbol{e}}D\left(\boldsymbol{e}\right)\left|\psi\right\rangle \qquad \qquad \boldsymbol{s}(\boldsymbol{e}) = MJ\boldsymbol{e} \mod 1$

 $\eta(s) = (MJ)^{-1}s$ returns to codespace...

$$\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x}) \qquad \Theta_{\mathcal{L}}(z) = \sum_{\boldsymbol{x} \in \mathcal{L}} q^{\boldsymbol{x}^T \boldsymbol{x}} = \sum_{\delta \in \mathcal{D}} N_{\delta} q^{\delta} \qquad q = e^{i\pi z}$$
$$\mathcal{D} = \left\{ \|\boldsymbol{x}\|_2^2, \, \boldsymbol{x} \in \mathcal{L} \right\}^{96}$$

 $D\left(M_{i}^{T}\right)D\left(\boldsymbol{e}\right)\left|\psi\right\rangle = e^{i2\pi M_{i}J\boldsymbol{e}}D\left(\boldsymbol{e}\right)\left|\psi\right\rangle \qquad \qquad \boldsymbol{s}(\boldsymbol{e}) = MJ\boldsymbol{e} \mod 1$

 $\eta(s) = (MJ)^{-1}s$ returns to codespace... but have we applied logical operation?

$$\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x}) \qquad \Theta_{\mathcal{L}}(z) = \sum_{\boldsymbol{x} \in \mathcal{L}} q^{\boldsymbol{x}^T \boldsymbol{x}} = \sum_{\delta \in \mathcal{D}} N_{\delta} q^{\delta} \qquad q = e^{i\pi z}$$
$$\mathcal{D} = \left\{ \|\boldsymbol{x}\|_2^2, \, \boldsymbol{x} \in \mathcal{L} \right\}^{97}$$

$$D\left(M_{i}^{T}\right)D\left(\boldsymbol{e}\right)\left|\psi\right\rangle = e^{i2\pi M_{i}J\boldsymbol{e}}D\left(\boldsymbol{e}\right)\left|\psi\right\rangle \qquad \qquad \boldsymbol{s}(\boldsymbol{e}) = MJ\boldsymbol{e} \mod 1$$

 $\eta(s) = (MJ)^{-1}s$ returns to codespace... but have we applied logical operation?

Evaluate coset probabilities:

$$P([\boldsymbol{\eta}(\boldsymbol{s}) + \boldsymbol{\xi}^{\perp}] | \boldsymbol{s}) = P^{-1}(\boldsymbol{s}) \sum_{\boldsymbol{\xi} \in \mathcal{L}} P_{\tilde{\sigma}}(\boldsymbol{\eta}(\boldsymbol{s}) + \boldsymbol{\xi}^{\perp} + \boldsymbol{\xi})$$

$$\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x}) \qquad \Theta_{\mathcal{L}}(z) = \sum_{\boldsymbol{x} \in \mathcal{L}} q^{\boldsymbol{x}^T \boldsymbol{x}} = \sum_{\delta \in \mathcal{D}} N_{\delta} q^{\delta} \qquad q = e^{i\pi z}$$
$$\mathcal{D} = \left\{ \|\boldsymbol{x}\|_{2}^{2}, \, \boldsymbol{x} \in \mathcal{L} \right\}^{98}$$

$$D\left(M_{i}^{T}\right)D\left(\boldsymbol{e}\right)\left|\psi\right\rangle = e^{i2\pi M_{i}J\boldsymbol{e}}D\left(\boldsymbol{e}\right)\left|\psi\right\rangle \qquad \qquad \boldsymbol{s}(\boldsymbol{e}) = MJ\boldsymbol{e} \mod 1$$

 $\eta(s) = (MJ)^{-1}s$ returns to codespace... but have we applied logical operation?

Evaluate coset probabilities:

$$P([\boldsymbol{\eta}(\boldsymbol{s}) + \boldsymbol{\xi}^{\perp}]|\boldsymbol{s}) = P^{-1}(\boldsymbol{s}) \sum_{\boldsymbol{\xi} \in \mathcal{L}} P_{\tilde{\sigma}}(\boldsymbol{\eta}(\boldsymbol{s}) + \boldsymbol{\xi}^{\perp} + \boldsymbol{\xi})$$
$$= P^{-1}(\boldsymbol{s}) \sum_{\boldsymbol{\xi} \in \mathcal{L} + \boldsymbol{\eta}(\boldsymbol{s}) + \boldsymbol{\xi}^{\perp}} P_{\tilde{\sigma}}(\boldsymbol{\xi})$$
$$= \sqrt{2\pi\tilde{\sigma}^{2n}}^{-1} P^{-1}(\boldsymbol{s}) \Theta_{\mathcal{L} + \boldsymbol{\eta}(\boldsymbol{s}) + \boldsymbol{\xi}^{\perp}} \left(\frac{i}{2\pi\tilde{\sigma}^{2}}\right)$$

$$\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x}) \qquad \Theta_{\mathcal{L}}(z) = \sum_{\boldsymbol{x} \in \mathcal{L}} q^{\boldsymbol{x}^T \boldsymbol{x}} = \sum_{\delta \in \mathcal{D}} N_{\delta} q^{\delta} \qquad q = e^{i\pi z}$$
$$\mathcal{D} = \left\{ \|\boldsymbol{x}\|_2^2, \, \boldsymbol{x} \in \mathcal{L} \right\}^{99}$$

$$D\left(M_{i}^{T}\right)D\left(\boldsymbol{e}\right)\left|\psi\right\rangle = e^{i2\pi M_{i}J\boldsymbol{e}}D\left(\boldsymbol{e}\right)\left|\psi\right\rangle \qquad \qquad \boldsymbol{s}(\boldsymbol{e}) = MJ\boldsymbol{e} \mod 1$$

 $\eta(s) = (MJ)^{-1}s$ returns to codespace... but have we applied logical operation?

Evaluate coset probabilities:

$$P([\boldsymbol{\eta}(\boldsymbol{s}) + \boldsymbol{\xi}^{\perp}] | \boldsymbol{s}) = P^{-1}(\boldsymbol{s}) \sum_{\boldsymbol{\xi} \in \mathcal{L}} P_{\tilde{\sigma}}(\boldsymbol{\eta}(\boldsymbol{s}) + \boldsymbol{\xi}^{\perp} + \boldsymbol{\xi})$$

$$= P^{-1}(\boldsymbol{s}) \sum_{\boldsymbol{\xi} \in \mathcal{L} + \boldsymbol{\eta}(\boldsymbol{s}) + \boldsymbol{\xi}^{\perp}} P_{\tilde{\sigma}}(\boldsymbol{\xi})$$

$$= \sqrt{2\pi\tilde{\sigma}^{2n}}^{-1} P^{-1}(\boldsymbol{s}) \Theta_{\mathcal{L} + \boldsymbol{\eta}(\boldsymbol{s}) + \boldsymbol{\xi}^{\perp}} \left(\frac{i}{2\pi\tilde{\sigma}^{2}}\right)$$

$$\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x}) \qquad \Theta_{\mathcal{L}}(z) = \sum_{\boldsymbol{x} \in \mathcal{L}} q^{\boldsymbol{x}^T \boldsymbol{x}} = \sum_{\delta \in \mathcal{D}} N_{\delta} q^{\delta} \qquad q = e^{i\pi z}$$
$$\mathcal{D} = \left\{ \|\boldsymbol{x}\|_2^2, \, \boldsymbol{x} \in \mathcal{L} \right\}^{00}$$

$$D\left(M_{i}^{T}\right)D\left(\boldsymbol{e}\right)\left|\psi\right\rangle = e^{i2\pi M_{i}J\boldsymbol{e}}D\left(\boldsymbol{e}\right)\left|\psi\right\rangle \qquad \qquad \boldsymbol{s}(\boldsymbol{e}) = MJ\boldsymbol{e} \mod 1$$

 $\eta(s) = (MJ)^{-1}s$ returns to codespace... but have we applied logical operation?

Evaluate coset probabilities:

$$P([\boldsymbol{\eta}(\boldsymbol{s}) + \boldsymbol{\xi}^{\perp}]|\boldsymbol{s}) = P^{-1}(\boldsymbol{s}) \sum_{\boldsymbol{\xi} \in \mathcal{L}} P_{\tilde{\sigma}}(\boldsymbol{\eta}(\boldsymbol{s}) + \boldsymbol{\xi}^{\perp} + \boldsymbol{\xi})$$

$$= P^{-1}(\boldsymbol{s}) \sum_{\boldsymbol{\xi} \in \mathcal{L} + \boldsymbol{\eta}(\boldsymbol{s}) + \boldsymbol{\xi}^{\perp}} P_{\tilde{\sigma}}(\boldsymbol{\xi})$$

$$= \sqrt{2\pi\tilde{\sigma}^{2n}}^{-1} P^{-1}(\boldsymbol{s}) \Theta_{\mathcal{L} + \boldsymbol{\eta}(\boldsymbol{s}) + \boldsymbol{\xi}^{\perp}} \left(\frac{i}{2\pi\tilde{\sigma}^{2}}\right)$$

upshot:

Θ functions are ubiquitous in lattice theory, estimate those for approx MLD!

$$\mathcal{N}(\rho) \propto \int d^{2n} \boldsymbol{x} e^{-\frac{||\boldsymbol{x}||}{\sigma^2}} D(\boldsymbol{x}) \rho D^{\dagger}(\boldsymbol{x}) \qquad \Theta_{\mathcal{L}}(z) = \sum_{\boldsymbol{x} \in \mathcal{L}} q^{\boldsymbol{x}^T \boldsymbol{x}} = \sum_{\delta \in \mathcal{D}} N_{\delta} q^{\delta} \qquad q = e^{i\pi z}$$
$$\mathcal{D} = \left\{ \|\boldsymbol{x}\|_2^2, \, \boldsymbol{x} \in \mathcal{L} \right\}^{\mathbf{0}\mathbf{1}}$$

Inspired by: *T. Gannon,* Lattices and theta functions, *PhD thesis (1991)* (applied to string theories)

Inspired by: *T. Gannon,* Lattices and theta functions, *PhD thesis (1991)* (applied to string theories)

Consider concatenated codes

$$\mathcal{L}_{\text{conc}} = \bigoplus_{j=1}^{n} \mathcal{L}_{\text{loc},j} + \operatorname{span}_{\mathbb{Z}} G, \quad G \subset \bigoplus_{j} \mathcal{L}_{\text{loc},j}^{\perp}$$

With *G* sympl. integral.

Inspired by: *T. Gannon,* Lattices and theta functions, *PhD thesis (1991)* (applied to string theories)

Consider concatenated codes

$$\mathcal{L}_{\text{conc}} = \bigoplus_{j=1}^{n} \mathcal{L}_{\text{loc},j} + \text{span}_{\mathbb{Z}} G, \quad G \subset \bigoplus_{j} \mathcal{L}_{\text{loc},j}^{\perp}$$

With *G* sympl. integral. *G* is known as **glue group**

Inspired by: *T. Gannon,* Lattices and theta functions, *PhD thesis (1991)* (applied to string theories)

Consider concatenated codes

$$\mathcal{L}_{\text{conc}} = \bigoplus_{j=1}^{n} \mathcal{L}_{\text{loc},j} + \text{span}_{\mathbb{Z}} G, \quad G \subset \bigoplus_{j} \mathcal{L}_{\text{loc},j}^{\perp}$$
With G symple

With *G* sympl. integral. *G* is known as **glue group**

Generalize:

Inspired by: *T. Gannon,* Lattices and theta functions, *PhD thesis (1991)* (applied to string theories)

Consider concatenated codes

$$\mathcal{L}_{\text{conc}} = \bigoplus_{j=1}^{n} \mathcal{L}_{\text{loc},j} + \text{span}_{\mathbb{Z}}G, \quad G \subset \bigoplus_{j} \mathcal{L}_{\text{loc},j}^{\perp}$$
With G sympl. integral.
G is known as glue group

Generalize:

Replace $\bigoplus_{j=1}^{n} \mathcal{L}_{\text{loc},j} \to \mathcal{L}_{0} = \bigoplus_{j=1}^{l} \mathcal{L}_{j}, \text{ choose } G \subset \mathcal{L}_{0}^{\perp}$

Inspired by: *T. Gannon,* Lattices and theta functions, *PhD thesis (1991)* (applied to string theories)

Consider concatenated codes

$$\mathcal{L}_{conc} = \bigoplus_{j=1}^{n} \mathcal{L}_{loc,j} + \operatorname{span}_{\mathbb{Z}} G, \quad G \subset \bigoplus_{j} \mathcal{L}_{loc,j}^{\perp}$$
With *G* sympl. integral.
G is known as **glue group**

Replace

ce
$$\bigoplus_{j=1} \mathcal{L}_{\mathrm{loc},j} \to \mathcal{L}_0 = \bigoplus_{j=1} \mathcal{L}_j$$
, choose $G \subset \mathcal{L}_0^{\perp}$

Concatenated codes are **special** cases: are they **optimal**?

Inspired by: *T. Gannon*, Lattices and theta functions, *PhD thesis (1991)* (applied to string theories)

Consider concatenated codes

$$\mathcal{L}_{conc} = \bigoplus_{j=1}^{n} \mathcal{L}_{loc,j} + \operatorname{span}_{\mathbb{Z}} G, \quad G \subset \bigoplus_{j} \mathcal{L}_{loc,j}^{\perp}$$
With *G* sympl. integral.
G is known as **glue group**

$$\operatorname{conc}_{l} = \bigoplus_{j=1}^{n} \mathcal{L}_{loc,j} \rightarrow \mathcal{L}_{0} = \bigoplus_{j=1}^{l} \mathcal{L}_{j}, \quad \operatorname{choose}_{j} G \subset \mathcal{L}_{0}^{\perp}$$

Gen

$$\bigoplus_{j=1} \mathcal{L}_{\mathrm{loc},j} \to \mathcal{L}_0 = \bigoplus_{j=1} \mathcal{L}_j, \quad \text{choose} \quad G \subset \mathcal{L}_0^{\perp}$$

Concatenated codes are **special** cases: are they **optimal**?

Conjecture: distance computed similarly to concatenated codes (but strongly depends on G)

108
Inspired by: *T. Gannon*, Lattices and theta functions, *PhD thesis* (1991) S. Bravyi, M. B. Hastings, STOC (2014) (homological product codes)

Inspired by: *T. Gannon*, Lattices and theta functions, *PhD thesis (1991) S. Bravyi, M. B. Hastings,* STOC *(2014)* (homological product codes)

Take: $\mathcal{L}_1 = \mathcal{L}(M_1) \subset \mathbb{R}^2$ $\mathcal{L}_2 = \mathcal{L}(M_2) \subset \mathbb{R}^n$

Symplectically integer

with $G_2 = M_2 M_2^T$ integer

Inspired by: *T. Gannon*, Lattices and theta functions, *PhD thesis (1991) S. Bravyi, M. B. Hastings,* STOC *(2014)* (homological product codes)

Take: $\mathcal{L}_1 = \mathcal{L}(M_1) \subset \mathbb{R}^2$ $\mathcal{L}_2 = \mathcal{L}(M_2) \subset \mathbb{R}^n$ Symplectically integer with $G_2 = M_2 M_2^T$ integer

Define:
$$\mathcal{L}_{\otimes} = \mathcal{L}(M_1 \otimes M_2)$$

Inspired by: *T. Gannon,* Lattices and theta functions, *PhD thesis (1991) S. Bravyi, M. B. Hastings,* STOC *(2014)* (homological product codes)

Take: $\mathcal{L}_1 = \mathcal{L}(M_1) \subset \mathbb{R}^2$ $\mathcal{L}_2 = \mathcal{L}(M_2) \subset \mathbb{R}^n$ Symplectically integerwith $G_2 = M_2 M_2^T$ integer

Define:
$$\mathcal{L}_{\otimes} = \mathcal{L}(M_1 \otimes M_2)$$

By construction: $A_{\otimes} = (M_1 \otimes M_2) J_{2n} (M_1 \otimes M_2)^T = A_1 \otimes G_2$ is integer

Inspired by: *T. Gannon,* Lattices and theta functions, *PhD thesis (1991) S. Bravyi, M. B. Hastings,* STOC *(2014)* (homological product codes)

Take: $\mathcal{L}_1 = \mathcal{L}(M_1) \subset \mathbb{R}^2$ $\mathcal{L}_2 = \mathcal{L}(M_2) \subset \mathbb{R}^n$ Symplectically integer with $G_2 = M_2 M_2^T$ integer

Define:
$$\mathcal{L}_{\otimes} = \mathcal{L}(M_1 \otimes M_2)$$

By construction: $A_{\otimes} = (M_1 \otimes M_2) J_{2n} (M_1 \otimes M_2)^T = A_1 \otimes G_2$ is integer

Rate:
$$k_{\otimes} = \frac{1}{2} \log_2 |A_1 \otimes G_2| = \frac{n}{2} \log_2 |A_1| + \log_2 |G_2|$$

Inspired by: *T. Gannon*, Lattices and theta functions, *PhD thesis* (1991) *S. Bravyi*, *M. B. Hastings*, STOC (2014) (homological product codes)

Take:
$$\mathcal{L}_1 = \mathcal{L}(M_1) \subset \mathbb{R}^2$$
 $\mathcal{L}_2 = \mathcal{L}(M_2) \subset \mathbb{R}^n$
Symplectically integer with $G_2 = M_2 M_2^T$ integer

Define:
$$\mathcal{L}_{\otimes} = \mathcal{L}(M_1 \otimes M_2)$$

By construction: $A_{\otimes} = (M_1 \otimes M_2) J_{2n} (M_1 \otimes M_2)^T = A_1 \otimes G_2$ is integer

Rate:
$$k_{\otimes} = \frac{1}{2} \log_2 |A_1 \otimes G_2| = \frac{n}{2} \log_2 |A_1| + \log_2 |G_2|$$

Theorem: distance bound

$$\max\left\{\frac{\Delta_1}{\lambda_n(\mathcal{L}_2)}, \frac{\Delta_2}{\lambda_2(\mathcal{L}_1)}\right\} \le \Delta_{\otimes} \le \Delta_1 \Delta_2$$

114

Conclusions

• Introduced bosonic codes and lattices

- Introduced bosonic codes and lattices
- Lattice bases: link to experimental hardness, resource savings

- Introduced bosonic codes and lattices
- Lattice bases: link to experimental hardness, resource savings
- Symplectically equivalent codes

- Introduced bosonic codes and lattices
- Lattice bases: link to experimental hardness, resource savings
- Symplectically equivalent codes
- Distance of a GKP code: upper- and lower- bounds from lattice properties

- Introduced bosonic codes and lattices
- Lattice bases: link to experimental hardness, resource savings
- Symplectically equivalent codes
- Distance of a GKP code: upper- and lower- bounds from lattice properties
- Distance completely specified by lattice distance distribution

- Introduced bosonic codes and lattices
- Lattice bases: link to experimental hardness, resource savings
- Symplectically equivalent codes
- Distance of a GKP code: upper- and lower- bounds from lattice properties
- Distance completely specified by lattice distance distribution
- Decoding formulated purely in terms of lattice quantities (Θ functions)

- Introduced bosonic codes and lattices
- Lattice bases: link to experimental hardness, resource savings
- Symplectically equivalent codes
- Distance of a GKP code: upper- and lower- bounds from lattice properties
- Distance completely specified by lattice distance distribution
- Decoding formulated purely in terms of lattice quantities (Θ functions)
- New codes (lattice tensor product, glued lattices)

- Introduced bosonic codes and lattices
- Lattice bases: link to experimental hardness, resource savings
- Symplectically equivalent codes
- Distance of a GKP code: upper- and lower- bounds from lattice properties
- Distance completely specified by lattice distance distribution
- Decoding formulated purely in terms of lattice quantities (Θ functions)
- New codes (lattice tensor product, glued lattices)

Future perspectives

- Introduced bosonic codes and lattices
- Lattice bases: link to experimental hardness, resource savings
- Symplectically equivalent codes
- Distance of a GKP code: upper- and lower- bounds from lattice properties
- Distance completely specified by lattice distance distribution
- Decoding formulated purely in terms of lattice quantities (Θ functions)
- New codes (lattice tensor product, glued lattices)

Future perspectives

Lattice-based numerical techniques for practical decoding?
 (Θ functions, Fourier series)

- Introduced bosonic codes and lattices
- Lattice bases: link to experimental hardness, resource savings
- Symplectically equivalent codes
- Distance of a GKP code: upper- and lower- bounds from lattice properties
- Distance completely specified by lattice distance distribution
- Decoding formulated purely in terms of lattice quantities (Θ functions)
- New codes (lattice tensor product, glued lattices)

Future perspectives

- Lattice-based numerical techniques for practical decoding?
 (Θ functions, Fourier series)
- Better codes from classical lattice codes? (LDLC...)

- Introduced bosonic codes and lattices
- Lattice bases: link to experimental hardness, resource savings
- Symplectically equivalent codes
- Distance of a GKP code: upper- and lower- bounds from lattice properties
- Distance completely specified by lattice distance distribution
- Decoding formulated purely in terms of lattice quantities (Θ functions)
- New codes (lattice tensor product, glued lattices)

Future perspectives

- Lattice-based numerical techniques for practical decoding?
 (Θ functions, Fourier series)
- Better codes from classical lattice codes? (LDLC...)

Thank you!

arXiv:2109.14645