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● Good against common noise

● Logical Clifford = Gaussian operations (“easy” - good for EC & QIP)

● Can be used as effective qubits and combined with stabilizer codes

● Can protect CV systems (idea: error mitigation for Boson Sampling)

● Logical states thought hard to realize, now there are experiments!
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● Can be effective qubits, combined with qubit codes

● Can protect CV systems
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1. Lattice formalism
2. Code properties from lattice bases
3. Symplectic operations
4. Distance bounds for GKP codes
5. Decoding problem and Θ functions
6. GKP codes beyond concatenation

Outline

upshot: 
lattices are very well studied!
 

…but not so much for GKP!
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Ex: L=3 surface code
3n - 1 = 26 stab.

lattice basis reduction

2n = 18 stab. gens.

can do respecting weights, geometric locality!

Lattice bases

Exploit basis manipulations/properties to study codes 

Theorem (Hadamard’s bound):

Resource savings from lattice basis reduction

Encoding ratio related to “experimental measurement hardness”
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Theorem (symplectically equivalent codes):

Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)

Proof sketch:

define

then then symplectic M. are a group

then scale back.
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Theorem (symplectically equivalent codes):

Multi-mode generalization of Hänggli, Heinze, König, PRA 102 (2020)

Corollary :

one qubit encoded in mode 1, no qubit on other modes

Generalizes to higher logical dimensions

Example of inequivalent codes: 2 qubits in 2 modes can have   or
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Hp: small shifts are more likely

Define:

For   qubit code concatenated with local GKP:

Proof sketch:

Note

Take minimal

write and note they are all orthogonal.
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Hp: small shifts are more likely

Define:

For   qubit code concatenated with local GKP:

From transference theorems we have the following Theorem (distance bound I):

From symplectic equivalence we have the following Theorem (distance bound II):

(successive minima)with

Measure of “squeezing”
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Distance of GKP codes: Θ functions 

Lattice Θ function:

Theorem:

Corollary: (from the fact that concatenated codes ~ Construction A lattices)

The distance of a GKP code can be estimated through logarithmic fit for small q

Derived from ECC conds. in P. Shor, R. Laflamme PRL 78 (1997) E. M. Rains, IEEE Trans. Inf. Th. 44 (1998)

consider
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MLD:

upshot:
Θ functions are ubiquitous in lattice theory, estimate those for approx MLD!

returns to codespace…but have we applied logical operation?

Evaluate coset probabilities:
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Consider concatenated codes 

With G sympl. integral. 
G is known as glue group

Replace choose

Generalize:

Inspired by: (applied to string theories)T. Gannon, Lattices and theta functions, PhD thesis (1991)

Conjecture:  distance computed similarly to concatenated codes (but strongly depends on G)

Concatenated codes are special cases: are they optimal?
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Inspired by: T. Gannon, Lattices and theta functions, PhD thesis (1991)

S. Bravyi, M. B. Hastings, STOC (2014) (homological product codes)

Take:

Symplectically integer integerwith

Define:

By construction:

Theorem: distance bound

Rate:

is integer
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Future perspectives

● Introduced bosonic codes and lattices
● Lattice bases: link to experimental hardness, resource savings
● Symplectically equivalent codes
● Distance of a GKP code: upper- and lower- bounds from lattice properties
● Distance completely specified by lattice distance distribution
● Decoding formulated purely in terms of lattice quantities (Θ functions)
● New codes (lattice tensor product, glued lattices)

Thank you! arXiv:2109.14645

● Lattice-based numerical techniques for practical decoding? 
(Θ functions, Fourier series)

● Better codes from classical lattice codes? (LDLC...)

https://arxiv.org/abs/2109.14645
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