

Random coding for sharing bosonic quantum secrets

F. Arzani^{1,2}*, G. Ferrini³, *F. Grosshans*², *D. Markham*²

¹Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

²Sorbonne Université, CNRS, Laboratoire d'Informatique de Paris 6, F-75005 Paris, France ³Department of Microtechnology and Nanoscience (MC2),Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

with

Introduction

<u>*What*</u> ? A vast class of random schemes to share continuous-variable states.

<u>How</u>? Bosonic modes in **arbitrary secret** states are mixed with ancillary squeezed modes through a passive interferometer. We prove that almost any interferometer can be used.

<u>*Where*</u> ? The protocol was devised having **optical systems** in mind but can be adapted to **any bosonic system**.

- *Why* ? Ease experimental requirements
 - Potentially applicable to share interesting/useful states across networks
 - Connections with relativity & black holes (via error correction)

Secret sharing 101

When ? Hopefully experiments will be implemented soon ;-)

Bonus: Decoding computed and implemented efficiently with a Gaussian unitary, # of squeezers $\leq 2 \times #$ of secret modes

M. Hillery, V. Bužek & A. Berthiaume, PRA 59 (1999) R. Cleve, D. Gottesman & H.-K. Lo, PRL 83 (1999)

T. Tyc & B.C. Sanders, PRA 65 (2002)

Access parties: Authorized subsets of players Adversary structure: Groups that should not get information **Threshold schemes**: any *k* or more players are authorized

*fra.arzani@gmail.com