Gaussian and non-Gaussian resources in quantum optics
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quantum resources  Gaussian non-Gaussian

Classification of mathematical-problems as linear and nentinear is like

classification of the Universe as bananas and non-bananas.

- Vladimir Arnol’'d (?)

Quantum

Architectures,
Algorithms,
Applications

and their Theory



Quantum optics

Light is used for ordinary
(classical) communications

Atomic spectra Blackbody radiation Photoelectric Effect Quantum Electrodynamics

:> Lots of know-how, theory, instrumentation

Photons interact weakly :> Easy to protect fragile quantum states
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Quantum information processing

Bits :

v €{0,1}

Qubits : finite dimension — discrete variables

¥) = |0) + B]1)

Continuous variables : infinite dimension

Also known as qu-modes, bosonic systems

) = ap|0) + a1 |1) + a22) + ...

* More general
* Large scale entanglement...

A
()XANADU u /k aWs

ALICE & BOB QUANDEI A

Computational
advantage
[MLF+22]

Error correction {
[SER+22] & O T Fee

[MLF+22] Nature 606 (2022)
[SER+22] arXiv:2211.09116 (2022)
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Outline

1. Continuous variables in quantum optics : an introduction
2. Gaussian operations : definitions, experimental tools

3. Protocols accessible through Gaussian operations

4. Limitations of Gaussian operations

5. Non-Gaussian resources in optics

6. Protocols accessible with non-Gaussian operations
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Formalism



Rosetta stone

DV : information encoded in d-level CV : information encoded in observables with
systems (typically d = 2) continuous spectrum, e.g. : q’“ p
o |0) + B 1) é ¥(@) |7) g do
R
Pr(0) = |af - Pr(g€ oo +de]) = [9(a)|" da
2 2 2
al” +]8]" =1 ()" de =1
R

H = C° H = L? (R, C)
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Continuous-variable qguantum systems

H

Free electromagnetic field

€0 3 2
> d E-(r

_Zw] Q2

)+ Pi(t))

Expand on basis Maxwell Egs. solutions

Abstraction: harmonic oscillators

1)+ cEB? (r

1))

Impose: {Qj,ﬁl} — 7:(Sj,l

Define: a; =

. 1

_ B P P

H = g W (a a + 5
J

Physical realization: electric field

; 5t
: IAEq Egoxa+a
e Ep xi(a’ —a)

Ly
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Phase space description

Quadratures ~ position and momentum |:> Phase space representation

Wigner function ~ Quasi-probability distribution in phase space

1

Wy(a.0) = o [ dze?(q—o/2lpla + /2

Marginals Trace

Pr(q) = / dpW,(q,p)
Tr[AB] = / dgdpWa(q, p)Wg(q,p)

Pr(p) = / dgW,(q,p)
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Phase space description

Quadratures ~ position and momentum |:> Phase space representation

Wigner function ~ Quasi-probability distribution in phase space

1

Wy(a.0) = o [ dze?(q—o/2lpla + /2

fGaussian states: \
l | 2 )
/ May be negative!

/

~—= 7 = R /
- T / T /
) / T i o / p
~_ /

T // q T /
wacuum — Same marginals Squeezing / q
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Aside: modes

Electric field as many modes:

Normalized solutions [ (7", 1) of Maxwell's equations

Mode basis Quantum Hilbert space(s)
/ Fa(Ft) - 5 (F O dPrdt = 67 fre—a
fz S &2

Y Appa.nl: f1)®n2: fo)@

nl,n2,...
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What exactly is a mode?

Normalized solutions [ (7", 1) of Maxwell's equations

Polarization modes

o {20}

Spatial modes
TS

Temporal modes

dwnt Fourier Transform
Plane waves {6 } > ‘
Wn, w
modes { QWE %ME } { _z& \/ v }
w

~

~
~
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Gaussian operations



Gaussian states

Pth X €

(@) x Re(a)
(p) o< Im(cx)

(@) x Re(a)
(p) o< Im ()

A2G = A?*p =
A%G = A?p =
1
A%G=
A*q=A°p>
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Gaussian unitary operators

Vector notation J( 0 ]1)

f=(§) &5, 6] = iJji -1 0

Standard symplectic form

Generated by quadratic polynomials:

UégUG — S& + T = gl Ua = exp |—itP (q,p)]

S X
Phase-space deg (73) < 2
deformation Phase-§pace
translation

Action on Wigner function:

&8 =i = STJS =J Wy (@) = WS~ (z —n))

Sp (2n, R)

A. B. Dutta, N. Mukunda, R. Simon, Pramana 45 (1995) 14 Francesco Arzani



Gaussian unitary operators

Vector notation

€= ( > ) &5 Skl = 1Tk

ULeUc =S¢ +x=¢

Phase-space

deformation Phase-space

] =idy = STIS=1J
Sp (2n, R)

0
-4

Standard symplectic form

)

Bloch-Messiah (Euler) decomposition:

S = R1KR>

Squeezing:
_ 3 1 T'n —T1 —Tn
K—dlag(e L...,e e e )

Linear optics (passive interferometers):

&

X -Y

Yy X

), X+1Y eU(n)

A. B. Dutta, N. Mukunda, R. Simon, Pramana 45 (1995)

Francesco Arzani



Squeezing

(

) =

Heisenberg pic
(0)
q
—>
T ) (

> 2K N

ture:
e_rq(o)
e p(0)

i’ _L>S|gnal

pump

y(2)

Vcoshr 2 Z

|dIer

— anhfr

)

(2n)!

ST 12n)

/
)
/
/
//
/
/
r
,
/

Tim |r) = [0),
im_|r) = [0),
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Linear optics

* Conserve total particle number (« passive »)

* Symplectic & orthogonal action

* Can be constructed as beam splitters + free evolution

Change of modes - . Linear optics
g (1) = Uk fm (7 1) b= (UT), am
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Displacements

Change mean value
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Measurements

Homodyne detection

Phase of LO = measured quadrature

==> Tomography

A.l.Lvovsky, M.G.Raymer,
Rev. Mod. Phys. 81 (2009)

U. Leonhardt,
Cambridge U. P. (1997)

signal

detector CI)

A4

©

=

Heterodyne detection

Projects on coherent state

detector

aro = |larole®

qo = cosBq — sin6p

signal

g
P> measuremerit.

D

vacuum

7

¢} measurement

local oscillator

19
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Channels

Stinespring:

1. Add auxiliary systems in Gaussian states
2. Perform overall Gaussian unitary
3. Measure some modes

4. Discard some modes signal

Example: photon loss absorption

U. Leonhardlt,
Cambridge U. P. (1997)
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Protocols using only Gaussian operations



Gaussian quantum protocols

Quantum teleportation

Quantum key distribution

Quantum illumination

Quantum secret sharing

Quantum error correction®
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Quantum teleportation

° Classical Communication
Alice G p) Bob

Homodyne Ay oA Ya A —r ~(0
5 X, =Xx,— 2 x_=x,,|+e q()
e x_ Ny s 1/ . —r A O
+ - Py'= by +2"p =Py | +e " p¥
Conditional Displacements
B-Splitter
a b
li? ----------------------
Xin s Pin EPR pair

.
.....
. "l
.......
--------------

[PMO6] Laser Physics (2006) 23 Francesco Arzani



Quantum cryptography : Quantum state sharing

Multi-party cryptographic primitive
to securely share a quantum state
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Quantum cryptography : Quantum state sharing

Multi-party cryptographic primitive
to securely share a quantum state
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Quantum cryptography : Quantum state sharing

Multi-party cryptographic primitive
to securely share a quantum state

information
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Quantum cryptography : Quantum state sharing

> No
information

Multi-party cryptographic primitive
to securely share a quantum state
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Quantum cryptography : Quantum state sharing

> No
information

Multi-party cryptographic primitive
to securely share a quantum state

Theory —> Experiments —>  New theory

D. Markham & P. van Loock

AIP Conference Proceedings (2011) Y. Cai et al, Nat. Comm. 8 (2017) F. Arzani et al, PRA 100 (2019)
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Quantum cryptography : Quantum state sharing

m 1 > No
| information
Multi-party cryptographic primitive
to securely share a quantum state
General CV (Gaussian) scheme
(]
I
U i .o )
g d:'f o0 5 /Quantum state sharing with D
s T 2 almost any passive interferometer
- 23 : :
WS * Generalizes previous protocols
| * Experimentally friendly
4 * Related to erasure correcting codes
N & =
Almost any!

Y. Cai et al, Nat. Comm. 8 (2017) 29 )
F. Arzani et al, PRA 100 (2019) Francesco Arzani



Random schemes for quantum state sharing

secret state

Encoding :
Linear optics

squeezed
states

“
|

M@ ¥ +H1

Goal: 1) Get rid of these

2) solve for these

) ULeUq = S€ + x

8qz ( )
J —
p ¥ ) o7 p( )

« Bad » interferometers:

det (RH?) =0

Y. Cai et al, Nat. Comm. 8 (2017) 20
F. Arzani et al, PRA 100 (2019)
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Correcting stochastic errors

VOLUME 80, NUMBER 18 PHYSICAL REVIEW LETTERS 4 MAY 1998

Error Correction for Continuous Quantum Variables

Samuel L. Braunstein

SEECS, University of Wales, Bangor LL57 1UT, United Kingdom
(Received 21 November 1997)

We propose an error correction coding algorithm for continuous quantum variables. We use this
algorithm to construct a highly efficient 5-wave-packet code which can correct arbitrary single wave-
packet errors. We show that this class of continuous variable codes is robust against imprecision in the
error syndromes. A potential implementation of the scheme is presented. [S0031-9007(98)05865-7]

Jowrnal of Modern Optics Taylor & Francis
Vol. 57, No. 19, 10 November 2010, 19651971 Taylor & Francis Group
A note on quantum error correction with continuous variables

Peter van Loock™

WOUt(xa p) — (1 _ V) I/I/in (Xa p) + )/Werror(x7 p) Optical Quantum Information Theory Group, Max Planck Institute for the Science of Light,
Institute of Theoretical Physics I, Universitdt Erlangen-Nurnberg, Staudtstr. 7/B2,
91058 Erlangen, Germany

(Received 26 February 2010, final version received 30 May 2010)

We demonstrate that continuous-variable quantum error correction based on Gaussian ancilla states and

Same as input except for a fGW modes Gaussian operations (for encoding, syndrome extraction, and recovery) can be very useful to suppress the effect
of non-Gaussian error channels. For a certain class of stochastic error models, reminiscent of those typically
considered in the qubit case, quantum error correction codes designed for single-channel errors may enhance the
transfer fidelities even when errors occur in every channel employed for transmitting the encoded state. In fact, in
this case, the error-correcting capability of the continuous-variable scheme turns out to be higher than that of its
discrete-variable analogues.
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No-Go results for Gaussian operations



Cannot correct Gaussian noise

week ending

PRL 102, 120501 (2009) PHYSICAL REVIEW LETTERS 27 MARCH 2009

No-Go Theorem for Gaussian Quantum Error Correction

Julien Niset,! Jaromir Fiurdsek,” and Nicolas J. Cerf'

lQuIC, Ecole Polytechnique, CP 165, Université Libre de Bruxelles, 1050 Brussels, Belgium
*Department of Optics, Palacky University, 17. listopadu 50, 77200 Olomouc, Czech Republic

*Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 20 November 2008; published 24 March 2009)

We prove that Gaussian operations are of no use for protecting Gaussian states against Gaussian errors
in quantum communication protocols. Specifically, we introduce a new quantity characterizing any single-
mode Gaussian channel, called entanglement degradation, and show that it cannot decrease via Gaussian
encoding and decoding operations only. The strength of this no-go theorem is illustrated with some
examples of Gaussian channels.

:> fully Gaussian schemes are useless for loss, thermal noise, ...
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No entanglement distillation

VOLUME 89, NUMBER 13 PHYSICAL REVIEW LETTERS 23 SEPTEMBER 2002

Distilling Gaussian States with Gaussian Operations is Impossible

J. Eisert, S. Scheel, and M. B. Plenio

QOLS, Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, SW7 2BW, United Kingdom
(Received 15 April 2002; published 4 September 2002)

We show that no distillation protocol for Gaussian quantum states exists that relies on (i) arbitrary
local unitary operations that preserve the Gaussian character of the state and (i1) homodyne detection
together with classical communication and postprocessing by means of local Gaussian unitary
operations on two symmetric identically prepared copies. This is in contrast to the finite-dimensional
case, where entanglement can be distilled in an iterative protocol using two copies at a time. The
ramifications for the distribution of Gaussian states over large distances will be outlined. We also
comment on the generality of the approach and sketch the most general form of a Gaussian local
operation with classical communication in a bipartite setting. [Ij [Ij
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No computational advantage

VOLUME 88, NUMBER 9 PHYSICAL REVIEW LETTERS

4 MARcH 2002

Efficient Classical Simulation of Continuous Variable Quantum Information Processes

Stephen D. Bartlett and Barry C. Sanders

Department of Physics and Centre for Advanced Computing—Algorithms and Cryptography, Macquarie University,

Sydney, New South Wales 2109, Australia

Samuel L. Braunstein and Kae Nemoto
Informatics, Bangor University, Bangor, LL57 1UT, United Kingdom

(Received 11 September 2001; revised manuscript received 26 November 2001; published 14 February 2002)

We obtain sufficient conditions for the efficient simulation of a continuous variable quantum algo-
rithm or process on a classical computer. The resulting theorem is an extension of the Gottesman-Knill
theorem to continuous variable quantum information. For a collection of harmonic oscillators, any quan-
tum process that begins with unentangled Gaussian states, performs only transformations generated by
Hamiltonians that are quadratic in the canonical operators, and involves only measurements of canonical
operators (including finite losses) and suitable operations conditioned on these measurements can be
simulated efficiently on a classical computer.

|:> no universal quantum computation

week ending

PHYSICAL REVIEW 7 DECEMBER 2012

PRL 109, 230503 (2012) LETTERS

Positive Wigner Functions Render Classical Simulation of Quantum Computation Efficient

A. Mari"?? and J. Eisert'
'Dahlem Center for Complex Quantum Systems, Freie Universitit Berlin, 14195 Berlin, Germany
Institute for Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany

*NEST, Scuola Normale Superiore and Istituto di Nanoscienze-CNR, 56126 Pisa, Italy
(Received 6 September 2012; published 4 December 2012)

We show that quantum circuits where the initial state and all the following quantum operations can be
represented by positive Wigner functions can be classically efficiently simulated. This is true both for
continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be
treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the
positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm
provides a way of sampling from the output distribution of a computation or a simulation, including the
efficient sampling from an approximate output distribution in the case of sampling imperfections for
initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner
function as separating classically efficiently simulable systems from those that are potentially universal
for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as
a computational resource.
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Non-Gaussian resources in optics



Main challenge

Photons interact weakly :> Easy to protect fragile quantum states

Photons interact weakly :> Very hard to entangle single photons,
implement coherent non-Gaussian
evolution
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Fock states and nhumber resolving detection

A

ataln) = nin)

POVM : {|0)(0|, [1)(1]|, |2)(2|, ...}

® > 00

Heralded Fock states: | ySig”al
1. Prepare pump \<A

idler
- (@)
1 . |
'TMSV) = g (—e'? tanh )" |nn)
coshr
n=0
2. Measure 712
Image : Ashton Bradley, Wikipedia 38 Francesco Arzani



“on-off” (“click”) detectors

POVM : 1]0)(0], T—10)(0}}

CLICK'!

[—10)0

]

A. Ourjoumtsev et al, Science 312(5770):83-86 (2006) 39 )
A. Zavatta et al, NJP 10(12):123006 (2008) Francesco Arzani



“on-off” (“click”) detectors

POVM : 1]0)(0], T—10)(0}}

Input nonlinear

b crystal
\ E \Q’ ‘
Gate Output & ¢ &

up-converted
photon

A. Eckstein et al, Opt. Expr. 19;15 (2011)

40 .
Y.S.Raetal, PRX 7,031012 (2017) Francesco Arzani



Protocols using non-Gaussian resources



Quantum computational advantage

Boson sampling:

Classically hard to sample from the output
probability distribution

S. Aaronson & A. Archipov, Th. of Computing (2013) , )
B. T. Gard et al, World Scientific Publishing Co (2015) : Francesco Arzani



Universal CV “computation”

Continuous Variables
2 X"
qumodes ‘M) - (L (R,C)) ‘W
General polynomlal
Universal set:

arbitrary encoding

Cn . N " Computatlon with
{ i4s 6zqzs ez%(q2+p2) 8 }
:

Single-mode, Gaussian Non-Gaussian

Two-modes C'»

. . . . 42
’LtHze’LtHle ’Ltng ’LtHl — e (4 [Hg,Hl] _|_O(t3)

T

Can increase degree if at least one is > 2

€

S. Lloyd, S. L. Braunstein, PRL 82 (1999) 43 Francesco Arzani



Polynomial approximations to NG gates

Procedure. MU y) ————1 2" (34 ) —— Terr [0}

1.Entangle input to a Gaussian state state .

2.Detect a single photon (probabilistic) Cy, Displaceme

3.Perform correction nm

4.Repeat o, k) o _ﬂ/ 1
23‘;'2;:3 state Single-photon projection

Effective transformation

Tost ;f;gxp{ (4f2k2) (@+po)2}][(é— (o, k) )]
\ -

Normalization : Monomial
Gaussian ,
in g

envelope e
e =T +ivg® = (G — M) (G — A2) (= 3)

~

=

Single-photon non-unitary operations can be used
_to approximate non-Gaussian unitary evolution

FA, N. Treps, G. Ferrini, PRA 95 (2017) 44 Francesco Arzani



Protecting from Gaussian error channels

Name Designed for: Structure:
4 410, [.)
po] +s . Binomial : photon loss/gain Superpositions of
=] non-contiguous Fock states
42024 42024
q q T T - F T T T T T T T e e T L T e LT P T EEEL L LRI
4 1 IOL) |1L) iy
b0 = = Cat photon loss/gain Superpositions of
2 {— = coherent states
_4 -
42024 42024 : :
q q B~
2://n 1l0,) I1,)
= . ..
p o : GKP Displacements Superpositions of
ijﬂ : position eigenstates
S
21 0y 23 -2y 0 24/
q q
45 Francesco Arzani

Joshi, Noh, Gao, Q. Sc. Tech. 6 (2021)



Gottesman-Kitaev-Preskill codes |

B I

o= 3 [k, = 3 k), <

e

D. Gottesman, A. Kitaev, J. Preskill PRA 64 (2001) 46 Francesco Arzani



Gottesman-Kitaev-Preskill codes li

{D(&1), -, D(Ean)} =D DEIY) = [¥) V5 %(5)

D(&;)D(&) = D(&x)D(€;) \

q

S = <D(€1)7 AR D(€2n)>
D(&;)D(&r) = €'%*D(&; + &)

S%L',:{szjfj Z ZjEZH

D. Gottesman, A. Kitaev, J. Preskill PRA 64 (2001) 47 Francesco Arzani



The lattice point of view

For exponential noise suppression: more oscillators

Up to now: concatenation — regard as effective qubits, add qubit-level code

— “lattice picture” only for individual oscillators,
not for whole code

Q: Can lattice properties be exploited more? Yes!

upshot:

lattices are very well studied!
J. Conway and N. Sloane. J. Conrad, J. Eisert, FA, Quantum (2022)
Sphere packings, lattices and groups, volume 290. 1988

...but not so much for gK)P! /°Code properties from lattice bases\

ottesman, Kitaev, Preskill PRA 64 (2001 . . .
Harrington, Preskill PRA 64 (2001) Symplectic operations

Hdinggli, Heinze, Kénig, PRA 102 (2020) * Distance bounds for GKP codes
Hanggli, Konig, IEEETIT 68(2) (2021) * Decoding problem and O functions
Schmidt, van Loock, PRA 105 (2022) \°GKP codes beyond concatenation Y
Royer, Singh, Girvin, PRX Quantum 105 (2022)

Lin, Chamberland, Noh PRX Quantum 4 (2023)
Conrad, Eisert, Seifert, arXiv:2303.02432 (2023)

48 Francesco Arzani



Thank you!
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